Design Advancements toward a Wearable Pediatric Robotic Knee Exoskeleton for Overground Gait Rehabilitation.

Ji Chen, Jon Hochstein, Christina Kim, Diane Damiano, Thomas Bulea
{"title":"Design Advancements toward a Wearable Pediatric Robotic Knee Exoskeleton for Overground Gait Rehabilitation.","authors":"Ji Chen,&nbsp;Jon Hochstein,&nbsp;Christina Kim,&nbsp;Diane Damiano,&nbsp;Thomas Bulea","doi":"10.1109/biorob.2018.8487195","DOIUrl":null,"url":null,"abstract":"<p><p>Exoskeleton assisted gait training in children with cerebral palsy (CP) offers the potential to increase therapy dosage and intensity compared to current approaches. Here, we report the design and characterization of a pediatric knee exoskeleton for gait training outside of a clinical environment. A multi-layered closed loop control system and a microcontroller based data acquisition system were implemented to provide individualized control approaches and achieve device portability for home use. Step response tests show the averaged 90% rise time was 45 ms for 5 Nm, 35 ms for 10 Nm, 40 ms for 15 Nm. The gain-limited closed-loop torque bandwidth was about 9 Hz with a 9 Nm amplitude chirp in knee flexion and extension. The actuator has low output impedance (<0.5 Nm) at low frequencies expected during use. Future work will investigate the long term effects of providing children with CP knee extension assistance during daily walking on gait biomechanics with, and without, the device.</p>","PeriodicalId":74522,"journal":{"name":"Proceedings of the ... IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics","volume":"2018 ","pages":"37-42"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/biorob.2018.8487195","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/biorob.2018.8487195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Exoskeleton assisted gait training in children with cerebral palsy (CP) offers the potential to increase therapy dosage and intensity compared to current approaches. Here, we report the design and characterization of a pediatric knee exoskeleton for gait training outside of a clinical environment. A multi-layered closed loop control system and a microcontroller based data acquisition system were implemented to provide individualized control approaches and achieve device portability for home use. Step response tests show the averaged 90% rise time was 45 ms for 5 Nm, 35 ms for 10 Nm, 40 ms for 15 Nm. The gain-limited closed-loop torque bandwidth was about 9 Hz with a 9 Nm amplitude chirp in knee flexion and extension. The actuator has low output impedance (<0.5 Nm) at low frequencies expected during use. Future work will investigate the long term effects of providing children with CP knee extension assistance during daily walking on gait biomechanics with, and without, the device.

Abstract Image

Abstract Image

Abstract Image

用于地面步态康复的可穿戴儿童机器人膝关节外骨骼的设计进展。
与目前的治疗方法相比,外骨骼辅助步态训练在脑瘫儿童(CP)中提供了增加治疗剂量和强度的潜力。在这里,我们报告了用于临床环境外步态训练的儿科膝关节外骨骼的设计和特征。实现了多层闭环控制系统和基于微控制器的数据采集系统,以提供个性化的控制方法并实现设备的便携性。阶跃响应测试表明,平均90%的上升时间为45ms, 10nm为35ms, 15nm为40ms。增益受限的闭环扭矩带宽约为9 Hz,膝关节屈伸时振幅为9 Nm。执行器输出阻抗低(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信