Protein phase change batteries drive innate immune signaling and cell fate.

Alejandro Rodriguez Gama, Tayla Miller, Shriram Venkatesan, Jeffrey J Lange, Jianzheng Wu, Xiaoqing Song, Dan Bradford, Malcolm Cook, Jay R Unruh, Randal Halfmann
{"title":"Protein phase change batteries drive innate immune signaling and cell fate.","authors":"Alejandro Rodriguez Gama, Tayla Miller, Shriram Venkatesan, Jeffrey J Lange, Jianzheng Wu, Xiaoqing Song, Dan Bradford, Malcolm Cook, Jay R Unruh, Randal Halfmann","doi":"10.1101/2023.03.20.533581","DOIUrl":null,"url":null,"abstract":"<p><p>How minute pathogenic signals trigger decisive immune responses is a fundamental question in biology. Classical signaling often relies on ATP-driven enzymatic cascades, but innate immunity frequently employs death fold domain (DFD) self-assembly. The energetic basis of this assembly is unknown. Here, we show that specific DFDs function as energy reservoirs through metastable supersaturation. Characterizing all 109 human DFDs, we identified sequence-encoded nucleation barriers specifically in the central adaptors of inflammatory signalosomes, allowing them to accumulate far above their saturation concentration while remaining soluble and poised for activation. We demonstrate that the inflammasome adaptor ASC is constitutively supersaturated <i>in vivo</i>, retaining energy to power on-demand cell death. Swapping a non-supersaturable DFD in the apoptosome with a supersaturable one sensitized cells to sublethal stimuli. Mapping all DFD nucleating interactions revealed that supersaturated adaptors are specifically templated by other DFDs in their respective pathways, limiting deleterious crosstalk. Across human cell types, adaptor supersaturation strongly correlates with cell turnover, implicating this thermodynamic principle in the trade-off between immunity and longevity. Profiling homologues from fish, sponge, and bacteria, we find nucleation barriers to be ancestrally conserved. These findings reveal DFD adaptors as biological phase-change materials that function like batteries, storing and privatizing energy for life-or-death decisions.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055258/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.03.20.533581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

How minute pathogenic signals trigger decisive immune responses is a fundamental question in biology. Classical signaling often relies on ATP-driven enzymatic cascades, but innate immunity frequently employs death fold domain (DFD) self-assembly. The energetic basis of this assembly is unknown. Here, we show that specific DFDs function as energy reservoirs through metastable supersaturation. Characterizing all 109 human DFDs, we identified sequence-encoded nucleation barriers specifically in the central adaptors of inflammatory signalosomes, allowing them to accumulate far above their saturation concentration while remaining soluble and poised for activation. We demonstrate that the inflammasome adaptor ASC is constitutively supersaturated in vivo, retaining energy to power on-demand cell death. Swapping a non-supersaturable DFD in the apoptosome with a supersaturable one sensitized cells to sublethal stimuli. Mapping all DFD nucleating interactions revealed that supersaturated adaptors are specifically templated by other DFDs in their respective pathways, limiting deleterious crosstalk. Across human cell types, adaptor supersaturation strongly correlates with cell turnover, implicating this thermodynamic principle in the trade-off between immunity and longevity. Profiling homologues from fish, sponge, and bacteria, we find nucleation barriers to be ancestrally conserved. These findings reveal DFD adaptors as biological phase-change materials that function like batteries, storing and privatizing energy for life-or-death decisions.

蛋白质过饱和为先天免疫信号提供动力。
细胞对病毒入侵等生存威胁的反应通常涉及某些信号蛋白的半结晶聚合,但聚合物的高度有序性没有已知的功能。我们假设,未发现的功能本质上是动力学的,从成核屏障到潜在的相变,而不是材料聚合物本身。我们使用荧光显微镜和分布式双氟FRET(DAmFRET)来表征死亡折叠结构域(DFD)超家族所有116个成员的相行为,这是人类免疫信号传导中最大的一组假定的聚合物模块。它们的一个子集以成核受限的方式聚合,能够数字化细胞状态。这些富集了DFD蛋白质-蛋白质相互作用网络的高度连接的枢纽。全长(F.L)信号体适配器保留了这种活性。然后,我们设计并进行了一个全面的成核相互作用屏幕,以绘制通过网络的信号通路。该结果概括了已知的信号通路,包括最近发现的pyroptosis的不同细胞死亡子程序与外源性细胞凋亡之间的联系。我们继续在体内验证这种成核相互作用。在这个过程中,我们发现炎症小体是由衔接蛋白ASC的组成性过饱和提供动力的,这意味着先天免疫细胞在热力学上注定会导致炎症细胞死亡。最后,我们发现外源性凋亡途径中的过饱和导致细胞死亡,而内源性凋亡途径中缺乏过饱和则使细胞恢复。我们的研究结果共同表明,先天免疫是以偶尔的自发细胞死亡为代价的,并揭示了年龄相关炎症进行性的物理基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信