Chasen D. Griffin, Danya E. Weber, Priscilla Seabourn, Lorraine K. Waianuhea, Matthew C. I. Medeiros
{"title":"Filtration of environmentally sourced aquatic media impacts laboratory-colonised Aedes albopictus early development and adult bacteriome composition","authors":"Chasen D. Griffin, Danya E. Weber, Priscilla Seabourn, Lorraine K. Waianuhea, Matthew C. I. Medeiros","doi":"10.1111/mve.12672","DOIUrl":null,"url":null,"abstract":"<p>Microorganisms form close associations with metazoan hosts forming symbiotic communities, known as microbiomes, that modulate host physiological processes. Mosquitoes are of special interest in exploring microbe-modulated host processes due to their oversized impact on human health. However, most mosquito work is done under controlled laboratory conditions where natural microbiomes are not present and inferences from these studies may not extend to natural populations. Here we attempt to assemble a wild-resembling bacteriome under laboratory conditions in an established laboratory colony of <i>Aedes albopictus</i> using aquatic media from environmentally-exposed and differentially filtered larval habitats. While we did not successfully replicate a wild bacteriome using these filtrations, we show that these manipulations alter the bacteriomes of mosquitoes, generating a unique composition not seen in wild populations collected from and near our source water or in our laboratory colony. We also demonstrate that our filtration regimens impact larval development times, as well as impact adult survival on different carbohydrate diets.</p>","PeriodicalId":18350,"journal":{"name":"Medical and Veterinary Entomology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical and Veterinary Entomology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mve.12672","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microorganisms form close associations with metazoan hosts forming symbiotic communities, known as microbiomes, that modulate host physiological processes. Mosquitoes are of special interest in exploring microbe-modulated host processes due to their oversized impact on human health. However, most mosquito work is done under controlled laboratory conditions where natural microbiomes are not present and inferences from these studies may not extend to natural populations. Here we attempt to assemble a wild-resembling bacteriome under laboratory conditions in an established laboratory colony of Aedes albopictus using aquatic media from environmentally-exposed and differentially filtered larval habitats. While we did not successfully replicate a wild bacteriome using these filtrations, we show that these manipulations alter the bacteriomes of mosquitoes, generating a unique composition not seen in wild populations collected from and near our source water or in our laboratory colony. We also demonstrate that our filtration regimens impact larval development times, as well as impact adult survival on different carbohydrate diets.
期刊介绍:
Medical and Veterinary Entomology is the leading periodical in its field. The Journal covers the biology and control of insects, ticks, mites and other arthropods of medical and veterinary importance. The main strengths of the Journal lie in the fields of:
-epidemiology and transmission of vector-borne pathogens
changes in vector distribution that have impact on the pathogen transmission-
arthropod behaviour and ecology-
novel, field evaluated, approaches to biological and chemical control methods-
host arthropod interactions.
Please note that we do not consider submissions in forensic entomology.