Mengrong Yan, Mengyuan Ma, Rong Chen, Yangzi Cao, Wei Zhang, Xiang Liu
{"title":"Structural basis for the development of potential inhibitors targeting FadD23 from Mycobacterium tuberculosis","authors":"Mengrong Yan, Mengyuan Ma, Rong Chen, Yangzi Cao, Wei Zhang, Xiang Liu","doi":"10.1107/S2053230X23005836","DOIUrl":null,"url":null,"abstract":"<p>Sulfolipid-1 (SL-1) is a lipid that is abundantly found in the cell wall of <i>Mycobacterium tuberculosis</i> (<i>Mtb</i>). <i>Mtb</i>FadD23 is crucial in the SL-1 synthesis pathway. Previously, 5′-<i>O</i>-[<i>N</i>-(11-phenoxyundecanoyl)sulfamoyl]adenosine (PhU-AMS) has been shown to be a general inhibitor of fatty-acid-adenylating enzymes (FadDs) in <i>Mtb</i>. However, the fatty acyl-AMP ligase (FAAL) class of FadDs, which includes <i>Mtb</i>FadD23, appears to be functionally nonredundant in the production of multiple fatty acids. In this study, the ability of PhU-AMS to bind to <i>Mtb</i>FadD23 was examined under <i>in vitro</i> conditions. The crystal structure of the <i>Mtb</i>FadD23–PhU-AMS complex was determined at a resolution of 2.64 Å. Novel features were identified by structural analysis and comparison. Although PhU-AMS could bind to <i>Mtb</i>FadD23, it did not inhibit the FAAL adenylation activity of <i>Mtb</i>FadD23. However, PhU-AMS improved the main <i>T</i><sub>m</sub> value in a differential scanning fluorimetry assay, and a structural comparison of <i>Mtb</i>FadD23–PhU-AMS with FadD32 and PA1221 suggested that PhU-AMS blocks the loading of the acyl chain onto Pks2. This study sheds light on the structure-based design of specific inhibitors of <i>Mtb</i>FadD23 and general inhibitors of FAALs.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":"79 8","pages":"208-216"},"PeriodicalIF":1.1000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1107/S2053230X23005836","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica. Section F, Structural biology communications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S2053230X23005836","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Sulfolipid-1 (SL-1) is a lipid that is abundantly found in the cell wall of Mycobacterium tuberculosis (Mtb). MtbFadD23 is crucial in the SL-1 synthesis pathway. Previously, 5′-O-[N-(11-phenoxyundecanoyl)sulfamoyl]adenosine (PhU-AMS) has been shown to be a general inhibitor of fatty-acid-adenylating enzymes (FadDs) in Mtb. However, the fatty acyl-AMP ligase (FAAL) class of FadDs, which includes MtbFadD23, appears to be functionally nonredundant in the production of multiple fatty acids. In this study, the ability of PhU-AMS to bind to MtbFadD23 was examined under in vitro conditions. The crystal structure of the MtbFadD23–PhU-AMS complex was determined at a resolution of 2.64 Å. Novel features were identified by structural analysis and comparison. Although PhU-AMS could bind to MtbFadD23, it did not inhibit the FAAL adenylation activity of MtbFadD23. However, PhU-AMS improved the main Tm value in a differential scanning fluorimetry assay, and a structural comparison of MtbFadD23–PhU-AMS with FadD32 and PA1221 suggested that PhU-AMS blocks the loading of the acyl chain onto Pks2. This study sheds light on the structure-based design of specific inhibitors of MtbFadD23 and general inhibitors of FAALs.
期刊介绍:
Acta Crystallographica Section F is a rapid structural biology communications journal.
Articles on any aspect of structural biology, including structures determined using high-throughput methods or from iterative studies such as those used in the pharmaceutical industry, are welcomed by the journal.
The journal offers the option of open access, and all communications benefit from unlimited free use of colour illustrations and no page charges. Authors are encouraged to submit multimedia content for publication with their articles.
Acta Cryst. F has a dedicated online tool called publBio that is designed to make the preparation and submission of articles easier for authors.