Thomas Specht, Justus Arweiler, Johannes Stüber, Kerstin Münnemann, Hans Hasse, Fabian Jirasek
{"title":"Automated nuclear magnetic resonance fingerprinting of mixtures","authors":"Thomas Specht, Justus Arweiler, Johannes Stüber, Kerstin Münnemann, Hans Hasse, Fabian Jirasek","doi":"10.1002/mrc.5381","DOIUrl":null,"url":null,"abstract":"<p>Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for qualitative and quantitative analysis. However, for complex mixtures, determining the speciation from NMR spectra can be tedious and sometimes even unfeasible. On the other hand, identifying and quantifying structural groups in a mixture from NMR spectra is much easier than doing the same for components. We call this group-based approach “NMR fingerprinting.” In this work, we show that NMR fingerprinting can even be performed in an automated way, without expert knowledge, based only on standard NMR spectra, namely, <sup>13</sup>C, <sup>1</sup>H, and <sup>13</sup>C DEPT NMR spectra. Our approach is based on the machine-learning method of support vector classification (SVC), which was trained here on thousands of labeled pure-component NMR spectra from open-source data banks. We demonstrate the applicability of the automated NMR fingerprinting using test mixtures, of which spectra were taken using a simple benchtop NMR spectrometer. The results from the NMR fingerprinting agree remarkably well with the ground truth, which was known from the gravimetric preparation of the samples. To facilitate the application of the method, we provide an interactive website (https://nmr-fingerprinting.de), where spectral information can be uploaded and which returns the NMR fingerprint. The NMR fingerprinting can be used in many ways, for example, for process monitoring or thermodynamic modeling using group-contribution methods—or simply as a first step in species analysis.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"62 4","pages":"286-297"},"PeriodicalIF":1.9000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrc.5381","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mrc.5381","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for qualitative and quantitative analysis. However, for complex mixtures, determining the speciation from NMR spectra can be tedious and sometimes even unfeasible. On the other hand, identifying and quantifying structural groups in a mixture from NMR spectra is much easier than doing the same for components. We call this group-based approach “NMR fingerprinting.” In this work, we show that NMR fingerprinting can even be performed in an automated way, without expert knowledge, based only on standard NMR spectra, namely, 13C, 1H, and 13C DEPT NMR spectra. Our approach is based on the machine-learning method of support vector classification (SVC), which was trained here on thousands of labeled pure-component NMR spectra from open-source data banks. We demonstrate the applicability of the automated NMR fingerprinting using test mixtures, of which spectra were taken using a simple benchtop NMR spectrometer. The results from the NMR fingerprinting agree remarkably well with the ground truth, which was known from the gravimetric preparation of the samples. To facilitate the application of the method, we provide an interactive website (https://nmr-fingerprinting.de), where spectral information can be uploaded and which returns the NMR fingerprint. The NMR fingerprinting can be used in many ways, for example, for process monitoring or thermodynamic modeling using group-contribution methods—or simply as a first step in species analysis.
期刊介绍:
MRC is devoted to the rapid publication of papers which are concerned with the development of magnetic resonance techniques, or in which the application of such techniques plays a pivotal part. Contributions from scientists working in all areas of NMR, ESR and NQR are invited, and papers describing applications in all branches of chemistry, structural biology and materials chemistry are published.
The journal is of particular interest not only to scientists working in academic research, but also those working in commercial organisations who need to keep up-to-date with the latest practical applications of magnetic resonance techniques.