Predicting Colorectal Surgery Readmission Risk: a Surgery-Specific Predictive Model.

IF 1.5 Q3 HEALTH CARE SCIENCES & SERVICES
Thomas Clark Howell, Stephanie Lumpkin, Nicole Chaumont
{"title":"Predicting Colorectal Surgery Readmission Risk: a Surgery-Specific Predictive Model.","authors":"Thomas Clark Howell, Stephanie Lumpkin, Nicole Chaumont","doi":"10.1080/24725579.2023.2200210","DOIUrl":null,"url":null,"abstract":"<p><p>Most current predictive models for risk of readmission were primarily designed from non-surgical patients and often utilize administrative data alone. Models built upon comprehensive data sources specific to colorectal surgery may be key to implementing interventions aimed at reducing readmissions. This study aimed to develop a predictive model for risk of 30-day readmission specific to colorectal surgery patients including administrative, clinical, laboratory, and socioeconomic status (SES) data. Patients admitted to the colorectal surgery service who underwent surgery and were discharged from an academic tertiary hospital between 2017 and 2019 were included. A total of 1549 patients met eligibility criteria for this retrospective split-sample cohort study. The 30-day readmission rate of the cohort was 19.62%. A multivariable logistic regression was developed (C=0.70, 95% CI 0.61-0.73), which outperformed two internationally used readmission risk prediction indices (C=0.58, 95% CI 0.52-0.65) and (C=0.60, 95% CI 0.53-0.66). Tailored surgery-specific readmission models with comprehensive data sources outperform the most used readmission indices in predicting 30-day readmission in colorectal surgery patients. Model performance is improved by using more comprehensive datasets that include administrative and socioeconomic details about a patient, as well as clinical information used for decision-making around the time of discharge.</p>","PeriodicalId":37744,"journal":{"name":"IISE Transactions on Healthcare Systems Engineering","volume":"13 3","pages":"175-181"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10426736/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISE Transactions on Healthcare Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24725579.2023.2200210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Most current predictive models for risk of readmission were primarily designed from non-surgical patients and often utilize administrative data alone. Models built upon comprehensive data sources specific to colorectal surgery may be key to implementing interventions aimed at reducing readmissions. This study aimed to develop a predictive model for risk of 30-day readmission specific to colorectal surgery patients including administrative, clinical, laboratory, and socioeconomic status (SES) data. Patients admitted to the colorectal surgery service who underwent surgery and were discharged from an academic tertiary hospital between 2017 and 2019 were included. A total of 1549 patients met eligibility criteria for this retrospective split-sample cohort study. The 30-day readmission rate of the cohort was 19.62%. A multivariable logistic regression was developed (C=0.70, 95% CI 0.61-0.73), which outperformed two internationally used readmission risk prediction indices (C=0.58, 95% CI 0.52-0.65) and (C=0.60, 95% CI 0.53-0.66). Tailored surgery-specific readmission models with comprehensive data sources outperform the most used readmission indices in predicting 30-day readmission in colorectal surgery patients. Model performance is improved by using more comprehensive datasets that include administrative and socioeconomic details about a patient, as well as clinical information used for decision-making around the time of discharge.

预测结直肠手术再入院风险:特定手术预测模型。
目前大多数再入院风险预测模型主要是根据非手术患者设计的,通常只利用行政数据。根据结直肠手术专用的综合数据源建立的模型可能是实施旨在减少再入院干预措施的关键。本研究旨在开发一个预测结直肠手术患者 30 天再入院风险的模型,其中包括管理、临床、实验室和社会经济地位(SES)数据。研究纳入了 2017 年至 2019 年期间在一家学术性三级医院接受结直肠外科手术并出院的患者。共有1549名患者符合这项回顾性分离样本队列研究的资格标准。队列中的 30 天再入院率为 19.62%。研究结果显示,多变量逻辑回归(C=0.70,95% CI 0.61-0.73)优于两个国际通用的再入院风险预测指数(C=0.58,95% CI 0.52-0.65)和(C=0.60,95% CI 0.53-0.66)。在预测结直肠手术患者的 30 天再入院方面,具有全面数据源的定制手术再入院模型优于最常用的再入院指数。通过使用更全面的数据集,包括患者的行政和社会经济细节,以及出院时用于决策的临床信息,可以提高模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IISE Transactions on Healthcare Systems Engineering
IISE Transactions on Healthcare Systems Engineering Social Sciences-Safety Research
CiteScore
3.10
自引率
0.00%
发文量
19
期刊介绍: IISE Transactions on Healthcare Systems Engineering aims to foster the healthcare systems community by publishing high quality papers that have a strong methodological focus and direct applicability to healthcare systems. Published quarterly, the journal supports research that explores: · Healthcare Operations Management · Medical Decision Making · Socio-Technical Systems Analysis related to healthcare · Quality Engineering · Healthcare Informatics · Healthcare Policy We are looking forward to accepting submissions that document the development and use of industrial and systems engineering tools and techniques including: · Healthcare operations research · Healthcare statistics · Healthcare information systems · Healthcare work measurement · Human factors/ergonomics applied to healthcare systems Research that explores the integration of these tools and techniques with those from other engineering and medical disciplines are also featured. We encourage the submission of clinical notes, or practice notes, to show the impact of contributions that will be published. We also encourage authors to collect an impact statement from their clinical partners to show the impact of research in the clinical practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信