Shomesh E Chaudhuri, Phillip Adamson, Dean Bruhn-Ding, Zied Ben Chaouch, David Gebben, Liliana Rincon-Gonzalez, Barry Liden, Shelby D Reed, Anindita Saha, Daniel Schaber, Kenneth Stein, Michelle E Tarver, Andrew W Lo
{"title":"Patient-Centered Clinical Trial Design for Heart Failure Devices via Bayesian Decision Analysis.","authors":"Shomesh E Chaudhuri, Phillip Adamson, Dean Bruhn-Ding, Zied Ben Chaouch, David Gebben, Liliana Rincon-Gonzalez, Barry Liden, Shelby D Reed, Anindita Saha, Daniel Schaber, Kenneth Stein, Michelle E Tarver, Andrew W Lo","doi":"10.1007/s40271-023-00623-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The statistical significance of clinical trial outcomes is generally interpreted quantitatively according to the same threshold of 2.5% (in one-sided tests) to control the false-positive rate or type I error, regardless of the burden of disease or patient preferences. The clinical significance of trial outcomes-including patient preferences-are also considered, but through qualitative means that may be challenging to reconcile with the statistical evidence.</p><p><strong>Objective: </strong>We aimed to apply Bayesian decision analysis to heart failure device studies to choose an optimal significance threshold that maximizes the expected utility to patients across both the null and alternative hypotheses, thereby allowing clinical significance to be incorporated into statistical decisions either in the trial design stage or in the post-trial interpretation stage. In this context, utility is a measure of how much well-being the approval decision for the treatment provides to the patient.</p><p><strong>Methods: </strong>We use the results from a discrete-choice experiment study focusing on heart failure patients' preferences, questioning respondents about their willingness to accept therapeutic risks in exchange for quantifiable benefits with alternative hypothetical medical device performance characteristics. These benefit-risk trade-off data allow us to estimate the loss in utility-from the patient perspective-of a false-positive or false-negative pivotal trial result. We compute the Bayesian decision analysis-optimal statistical significance threshold that maximizes the expected utility to heart failure patients for a hypothetical two-arm, fixed-sample, randomized controlled trial. An interactive Excel-based tool is provided that illustrates how the optimal statistical significance threshold changes as a function of patients' preferences for varying rates of false positives and false negatives, and as a function of assumed key parameters.</p><p><strong>Results: </strong>In our baseline analysis, the Bayesian decision analysis-optimal significance threshold for a hypothetical two-arm randomized controlled trial with a fixed sample size of 600 patients per arm was 3.2%, with a statistical power of 83.2%. This result reflects the willingness of heart failure patients to bear additional risks of the investigational device in exchange for its probable benefits. However, for increased device-associated risks and for risk-averse subclasses of heart failure patients, Bayesian decision analysis-optimal significance thresholds may be smaller than 2.5%.</p><p><strong>Conclusions: </strong>A Bayesian decision analysis is a systematic, transparent, and repeatable process for combining clinical and statistical significance, explicitly incorporating burden of disease and patient preferences into the regulatory decision-making process.</p>","PeriodicalId":51271,"journal":{"name":"Patient-Patient Centered Outcomes Research","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patient-Patient Centered Outcomes Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40271-023-00623-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The statistical significance of clinical trial outcomes is generally interpreted quantitatively according to the same threshold of 2.5% (in one-sided tests) to control the false-positive rate or type I error, regardless of the burden of disease or patient preferences. The clinical significance of trial outcomes-including patient preferences-are also considered, but through qualitative means that may be challenging to reconcile with the statistical evidence.
Objective: We aimed to apply Bayesian decision analysis to heart failure device studies to choose an optimal significance threshold that maximizes the expected utility to patients across both the null and alternative hypotheses, thereby allowing clinical significance to be incorporated into statistical decisions either in the trial design stage or in the post-trial interpretation stage. In this context, utility is a measure of how much well-being the approval decision for the treatment provides to the patient.
Methods: We use the results from a discrete-choice experiment study focusing on heart failure patients' preferences, questioning respondents about their willingness to accept therapeutic risks in exchange for quantifiable benefits with alternative hypothetical medical device performance characteristics. These benefit-risk trade-off data allow us to estimate the loss in utility-from the patient perspective-of a false-positive or false-negative pivotal trial result. We compute the Bayesian decision analysis-optimal statistical significance threshold that maximizes the expected utility to heart failure patients for a hypothetical two-arm, fixed-sample, randomized controlled trial. An interactive Excel-based tool is provided that illustrates how the optimal statistical significance threshold changes as a function of patients' preferences for varying rates of false positives and false negatives, and as a function of assumed key parameters.
Results: In our baseline analysis, the Bayesian decision analysis-optimal significance threshold for a hypothetical two-arm randomized controlled trial with a fixed sample size of 600 patients per arm was 3.2%, with a statistical power of 83.2%. This result reflects the willingness of heart failure patients to bear additional risks of the investigational device in exchange for its probable benefits. However, for increased device-associated risks and for risk-averse subclasses of heart failure patients, Bayesian decision analysis-optimal significance thresholds may be smaller than 2.5%.
Conclusions: A Bayesian decision analysis is a systematic, transparent, and repeatable process for combining clinical and statistical significance, explicitly incorporating burden of disease and patient preferences into the regulatory decision-making process.
期刊介绍:
The Patient provides a venue for scientifically rigorous, timely, and relevant research to promote the development, evaluation and implementation of therapies, technologies, and innovations that will enhance the patient experience. It is an international forum for research that advances and/or applies qualitative or quantitative methods to promote the generation, synthesis, or interpretation of evidence.
The journal has specific interest in receiving original research, reviews and commentaries related to qualitative and mixed methods research, stated-preference methods, patient reported outcomes, and shared decision making.
Advances in regulatory science, patient-focused drug development, patient-centered benefit-risk and health technology assessment will also be considered.
Additional digital features (including animated abstracts, video abstracts, slide decks, audio slides, instructional videos, infographics, podcasts and animations) can be published with articles; these are designed to increase the visibility, readership and educational value of the journal’s content. In addition, articles published in The Patient may be accompanied by plain language summaries to assist readers who have some knowledge of, but not in-depth expertise in, the area to understand important medical advances.
All manuscripts are subject to peer review by international experts.