{"title":"Acthar Gel Inhibits the Activation of CD4<sup>+</sup> and CD8<sup>+</sup> T Cells.","authors":"Dale Wright, Kyle Hayes","doi":"10.1089/jir.2022.0257","DOIUrl":null,"url":null,"abstract":"<p><p>Several inflammatory diseases are characterized by elevated T cell counts and high pro-inflammatory cytokine levels. Inhibiting T cell activity may reduce tissue damage associated with these diseases. Acthar<sup>®</sup> Gel has potent anti-inflammatory properties, yet little is known about its effect on T cells. This study compared the effects of Acthar, synthetic adrenocorticotropic hormone 1-24 (ACTH<sub>1-24</sub>) depot, and prednisolone in a murine model of T cell activation. Assessments of CD4<sup>+</sup> helper and CD8<sup>+</sup> cytotoxic T cells and plasma concentrations of interferon-γ (IFN-γ), interleukin-2 (IL-2), and tumor necrosis factor-α (TNF-α) were made following anti-CD3-activation. Acthar significantly reduced the number of activated CD4<sup>+</sup> and CD8<sup>+</sup> T cells at amounts comparable to synthetic ACTH<sub>1-24</sub> depot or prednisolone. However, Acthar reduced production of IFN-γ, IL-2, and TNF-α significantly more than the other drugs, suggesting that the <i>in vivo</i> immunomodulatory effects of Acthar on T cells are distinct from synthetic ACTH<sub>1-24</sub> depot or prednisolone.</p>","PeriodicalId":16261,"journal":{"name":"Journal of Interferon and Cytokine Research","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10122214/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Interferon and Cytokine Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/jir.2022.0257","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Several inflammatory diseases are characterized by elevated T cell counts and high pro-inflammatory cytokine levels. Inhibiting T cell activity may reduce tissue damage associated with these diseases. Acthar® Gel has potent anti-inflammatory properties, yet little is known about its effect on T cells. This study compared the effects of Acthar, synthetic adrenocorticotropic hormone 1-24 (ACTH1-24) depot, and prednisolone in a murine model of T cell activation. Assessments of CD4+ helper and CD8+ cytotoxic T cells and plasma concentrations of interferon-γ (IFN-γ), interleukin-2 (IL-2), and tumor necrosis factor-α (TNF-α) were made following anti-CD3-activation. Acthar significantly reduced the number of activated CD4+ and CD8+ T cells at amounts comparable to synthetic ACTH1-24 depot or prednisolone. However, Acthar reduced production of IFN-γ, IL-2, and TNF-α significantly more than the other drugs, suggesting that the in vivo immunomodulatory effects of Acthar on T cells are distinct from synthetic ACTH1-24 depot or prednisolone.
期刊介绍:
Journal of Interferon & Cytokine Research (JICR) provides the latest groundbreaking research on all aspects of IFNs and cytokines. The Journal delivers current findings on emerging topics in this niche community, including the role of IFNs in the therapy of diseases such as multiple sclerosis, the understanding of the third class of IFNs, and the identification and function of IFN-inducible genes.