Effect of overexpression of KLF4 on the growth and development of hair follicles in mice.

IF 0.8 3区 生物学 Q4 CELL BIOLOGY
Development Genes and Evolution Pub Date : 2023-12-01 Epub Date: 2023-08-10 DOI:10.1007/s00427-023-00708-8
Hongyu Han, Hong Qin, Yu Yang, Lijun Zhao, Tong Shen, Quanhai Pang
{"title":"Effect of overexpression of KLF4 on the growth and development of hair follicles in mice.","authors":"Hongyu Han, Hong Qin, Yu Yang, Lijun Zhao, Tong Shen, Quanhai Pang","doi":"10.1007/s00427-023-00708-8","DOIUrl":null,"url":null,"abstract":"<p><p>Hair follicle growth is cyclical, and hair cycle dysfunction can lead to hair follicle-related disorders, including alopecia and hirsutism. The objective was to investigate the influence and underlying mechanism of Krüppel-like factor 4 (KLF4) overexpression on hair follicle growth and development in C57BL/6 mice. To provide a theoretical basis for the biological functions of KLF4 gene in hair follicle development and hair follicle cycle, mice were assigned to three groups: experimental, overexpressing KLF4 (Ad-KLF4); control, expressing green fluorescent protein (Ad-NC); and blank, no treatment. Fur was removed from the dorsal surface, and the mice were intradermally injected with 25 μL 1 × 10<sup>10</sup> PFU/mL adenovirus vector (Ad-KLF4 or Ad-NC) at three points. Samples were collected for molecular biological and histological analysis. It was found that mRNA and protein levels of Wnt pathway-associated factors β-catenin, LEF1, hair follicle cell proliferation-related factor Ki67, and hair follicle inner caledrin marker AE15 were all significantly greater in the Ad-NC and blank groups than in Ad-KLF4 mice (P < 0.01). These findings were confirmed by immunohistochemical analysis. Hair growth was monitored photographically for 14 days, showing an absence of growth in the injected region of the KLF4-overexpressing mice in contrast to non-overexpressing areas where hair growth was normal. HE staining showed that hair follicles in the blank and Ad-NC mice were normal, while those in the KLF4-overexpressing areas remained in telogen or early anagen with spherical dermal papillae situated at the edge of the dermis and subcutaneous tissue without an inner heel sheath. In conclusion, it was found that KLF4 downregulated key Wnt/β-catenin-associated factors during follicular regeneration in mice, reducing both follicular development and growth.</p>","PeriodicalId":50588,"journal":{"name":"Development Genes and Evolution","volume":" ","pages":"137-145"},"PeriodicalIF":0.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Genes and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00427-023-00708-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/10 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hair follicle growth is cyclical, and hair cycle dysfunction can lead to hair follicle-related disorders, including alopecia and hirsutism. The objective was to investigate the influence and underlying mechanism of Krüppel-like factor 4 (KLF4) overexpression on hair follicle growth and development in C57BL/6 mice. To provide a theoretical basis for the biological functions of KLF4 gene in hair follicle development and hair follicle cycle, mice were assigned to three groups: experimental, overexpressing KLF4 (Ad-KLF4); control, expressing green fluorescent protein (Ad-NC); and blank, no treatment. Fur was removed from the dorsal surface, and the mice were intradermally injected with 25 μL 1 × 1010 PFU/mL adenovirus vector (Ad-KLF4 or Ad-NC) at three points. Samples were collected for molecular biological and histological analysis. It was found that mRNA and protein levels of Wnt pathway-associated factors β-catenin, LEF1, hair follicle cell proliferation-related factor Ki67, and hair follicle inner caledrin marker AE15 were all significantly greater in the Ad-NC and blank groups than in Ad-KLF4 mice (P < 0.01). These findings were confirmed by immunohistochemical analysis. Hair growth was monitored photographically for 14 days, showing an absence of growth in the injected region of the KLF4-overexpressing mice in contrast to non-overexpressing areas where hair growth was normal. HE staining showed that hair follicles in the blank and Ad-NC mice were normal, while those in the KLF4-overexpressing areas remained in telogen or early anagen with spherical dermal papillae situated at the edge of the dermis and subcutaneous tissue without an inner heel sheath. In conclusion, it was found that KLF4 downregulated key Wnt/β-catenin-associated factors during follicular regeneration in mice, reducing both follicular development and growth.

Abstract Image

过表达 KLF4 对小鼠毛囊生长和发育的影响
毛囊生长具有周期性,毛发周期功能障碍可导致毛囊相关疾病,包括脱发和多毛症。本研究旨在探讨克鲁珀尔样因子4(KLF4)过表达对C57BL/6小鼠毛囊生长发育的影响及其内在机制。为了给 KLF4 基因在毛囊发育和毛囊周期中的生物学功能提供理论依据,我们将小鼠分为三组:实验组,过表达 KLF4(Ad-KLF4);对照组,表达绿色荧光蛋白(Ad-NC);空白组,未处理。除去小鼠背侧的毛皮,在三个点皮下注射 25 μL 1 × 1010 PFU/mL 腺病毒载体(Ad-KLF4 或 Ad-NC)。采集样本进行分子生物学和组织学分析。结果发现,Wnt通路相关因子β-catenin、LEF1、毛囊细胞增殖相关因子Ki67和毛囊内钙化蛋白标记物AE15的mRNA和蛋白水平在Ad-NC组和空白组均显著高于Ad-KLF4小鼠(P<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Development Genes and Evolution
Development Genes and Evolution 生物-发育生物学
CiteScore
4.30
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: Development Genes and Evolution publishes high-quality reports on all aspects of development biology and evolutionary biology. The journal reports on experimental and bioinformatics work at the systemic, cellular and molecular levels in the field of animal and plant systems, covering key aspects of the following topics: Embryological and genetic analysis of model and non-model organisms Genes and pattern formation in invertebrates, vertebrates and plants Axial patterning, embryonic induction and fate maps Cellular mechanisms of morphogenesis and organogenesis Stem cells and regeneration Functional genomics of developmental processes Developmental diversity and evolution Evolution of developmentally relevant genes Phylogeny of animals and plants Microevolution Paleontology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信