{"title":"Allelic variation within the major APOE CpG island affects its methylation in the brain of targeted replacement mice expressing human APOE","authors":"Johanna Rueter, Gerald Rimbach, Patricia Huebbe","doi":"10.1016/j.bbagrm.2023.194942","DOIUrl":null,"url":null,"abstract":"<div><p></p><ul><li><span>•</span><span><p><span>The number of cytosine-phosphate-guanine (CpG) sites differs due to sequence variation in the human apolipoprotein E (</span><em>APOE</em>) gene.</p></span></li><li><span>•</span><span><p><em>APOE</em> DNA methylation is allele-dependently altered corresponding to the total number of CpG pairs in the brain of APOE targeted replacement mice (<em>APOE εpsilon 4</em> > <em>εpsilon 3</em> > <em>εpsilon 2</em>).</p></span></li><li><span>•</span><span><p>Binding of the methyl-CpG binding protein 2 to genomic <em>APOE</em> was in trend less pronounced in the brain of APOE4 mice.</p></span></li></ul></div>","PeriodicalId":55382,"journal":{"name":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","volume":"1866 3","pages":"Article 194942"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874939923000378","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
•
The number of cytosine-phosphate-guanine (CpG) sites differs due to sequence variation in the human apolipoprotein E (APOE) gene.
•
APOE DNA methylation is allele-dependently altered corresponding to the total number of CpG pairs in the brain of APOE targeted replacement mice (APOE εpsilon 4 > εpsilon 3 > εpsilon 2).
•
Binding of the methyl-CpG binding protein 2 to genomic APOE was in trend less pronounced in the brain of APOE4 mice.
期刊介绍:
BBA Gene Regulatory Mechanisms includes reports that describe novel insights into mechanisms of transcriptional, post-transcriptional and translational gene regulation. Special emphasis is placed on papers that identify epigenetic mechanisms of gene regulation, including chromatin, modification, and remodeling. This section also encompasses mechanistic studies of regulatory proteins and protein complexes; regulatory or mechanistic aspects of RNA processing; regulation of expression by small RNAs; genomic analysis of gene expression patterns; and modeling of gene regulatory pathways. Papers describing gene promoters, enhancers, silencers or other regulatory DNA regions must incorporate significant functions studies.