An Efficient and Reproducible Method for the Isolation and Culture of Primary Cardiomyocytes from Adult Zebrafish.

IF 1.4 4区 生物学 Q4 DEVELOPMENTAL BIOLOGY
Zebrafish Pub Date : 2023-06-01 DOI:10.1089/zeb.2023.0015
Chunyan Zhang, Yanyi Sun, Zhenyue Chen
{"title":"An Efficient and Reproducible Method for the Isolation and Culture of Primary Cardiomyocytes from Adult Zebrafish.","authors":"Chunyan Zhang,&nbsp;Yanyi Sun,&nbsp;Zhenyue Chen","doi":"10.1089/zeb.2023.0015","DOIUrl":null,"url":null,"abstract":"<p><p>Zebrafish is a popular animal model in regeneration studies due to their ability to regenerate the heart. Primary cardiomyocytes could be an alternative tool for studying the intrinsic mechanisms of cardiovascular disease <i>in vitro</i>. Thus, our objective is to develop an efficient protocol to isolate primary cardiomyocytes from zebrafish hearts. Low concentration of digestive enzyme (0.5 mg/mL collagenase type II) was utilized in our protocol to obtain single-cell suspension. The ventricles were fragmented, mechanically pipetted, and constantly shaken to ensure adequate contact between the tissues and the enzyme. Preplating the cell suspension onto culture plates for 2 h helped remove cardiac fibroblasts. The purity of isolated cells was validated by flow cytometry analysis of transgenic zebrafish with cardiomyocyte-specific expression of enhanced green fluorescent protein (EGFP) or endothelial cell-specific expression of mCherry. Quantitative real-time PCR analysis revealed a high level of the purity, with cardiac fibroblasts, endothelial cells, and epicardial cell markers scarcely detected in the purified cells. Altogether, this study established a reproducible protocol for isolating primary cardiomyocytes with high purity and activity from adult zebrafish hearts that can be cultured <i>in vitro</i> for up to 4 weeks. This protocol provides a valuable tool for studying the intrinsic mechanisms of cardiovascular disease <i>in vitro</i> using primary cardiomyocytes.</p>","PeriodicalId":23872,"journal":{"name":"Zebrafish","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zebrafish","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2023.0015","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Zebrafish is a popular animal model in regeneration studies due to their ability to regenerate the heart. Primary cardiomyocytes could be an alternative tool for studying the intrinsic mechanisms of cardiovascular disease in vitro. Thus, our objective is to develop an efficient protocol to isolate primary cardiomyocytes from zebrafish hearts. Low concentration of digestive enzyme (0.5 mg/mL collagenase type II) was utilized in our protocol to obtain single-cell suspension. The ventricles were fragmented, mechanically pipetted, and constantly shaken to ensure adequate contact between the tissues and the enzyme. Preplating the cell suspension onto culture plates for 2 h helped remove cardiac fibroblasts. The purity of isolated cells was validated by flow cytometry analysis of transgenic zebrafish with cardiomyocyte-specific expression of enhanced green fluorescent protein (EGFP) or endothelial cell-specific expression of mCherry. Quantitative real-time PCR analysis revealed a high level of the purity, with cardiac fibroblasts, endothelial cells, and epicardial cell markers scarcely detected in the purified cells. Altogether, this study established a reproducible protocol for isolating primary cardiomyocytes with high purity and activity from adult zebrafish hearts that can be cultured in vitro for up to 4 weeks. This protocol provides a valuable tool for studying the intrinsic mechanisms of cardiovascular disease in vitro using primary cardiomyocytes.

一种分离培养成年斑马鱼原代心肌细胞的高效可重复性方法。
斑马鱼是再生研究中常用的动物模型,因为它们具有再生心脏的能力。原代心肌细胞可能是体外研究心血管疾病内在机制的另一种工具。因此,我们的目标是开发一种从斑马鱼心脏中分离原代心肌细胞的有效方案。低浓度的消化酶(0.5 mg/mL II型胶原酶)在我们的方案中获得单细胞悬液。心室碎裂,机械移液,并不断摇动,以确保组织和酶之间有充分的接触。将细胞悬液预镀在培养板上2小时有助于去除心脏成纤维细胞。对心肌细胞特异性表达增强绿色荧光蛋白(EGFP)或内皮细胞特异性表达mCherry的转基因斑马鱼进行流式细胞术分析,验证了分离细胞的纯度。实时荧光定量PCR分析显示,纯化的细胞纯度高,几乎检测不到心脏成纤维细胞、内皮细胞和心外膜细胞标记物。总之,本研究建立了一种可重复的方案,用于从成年斑马鱼心脏中分离高纯度和高活性的原代心肌细胞,这些细胞可在体外培养长达4周。该方案为在体外使用原代心肌细胞研究心血管疾病的内在机制提供了有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Zebrafish
Zebrafish DEVELOPMENTAL BIOLOGY-ZOOLOGY
CiteScore
3.60
自引率
5.00%
发文量
29
审稿时长
3 months
期刊介绍: Zebrafish is the only peer-reviewed journal dedicated to the central role of zebrafish and other aquarium species as models for the study of vertebrate development, evolution, toxicology, and human disease. Due to its prolific reproduction and the external development of the transparent embryo, the zebrafish is a prime model for genetic and developmental studies. While genetically more distant from humans, the vertebrate zebrafish nevertheless has comparable organs and tissues, such as heart, kidney, pancreas, bones, and cartilage. Zebrafish introduced the new section TechnoFish, which highlights these innovations for the general zebrafish community. TechnoFish features two types of articles: TechnoFish Previews: Important, generally useful technical advances or valuable transgenic lines TechnoFish Methods: Brief descriptions of new methods, reagents, or transgenic lines that will be of widespread use in the zebrafish community Zebrafish coverage includes: Comparative genomics and evolution Molecular/cellular mechanisms of cell growth Genetic analysis of embryogenesis and disease Toxicological and infectious disease models Models for neurological disorders and aging New methods, tools, and experimental approaches Zebrafish also includes research with other aquarium species such as medaka, Fugu, and Xiphophorus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信