Curcumin inhibits malignant behavior of colorectal cancer cells by regulating M2 polarization of tumor-associated macrophages and metastasis associated in colon cancer 1 (MACC1) expression
{"title":"Curcumin inhibits malignant behavior of colorectal cancer cells by regulating M2 polarization of tumor-associated macrophages and metastasis associated in colon cancer 1 (MACC1) expression","authors":"Shuke Ge, Xu Sun, Limin Sang, Min Zhang, Xubo Yan, Qi Ju, Xuefeng Ma, Meng Xu","doi":"10.1111/cbdd.14330","DOIUrl":null,"url":null,"abstract":"<p>The present study was to investigate the underlying mechanism of the antitumor effect of curcumin in colorectal cancer cells, focusing on the M2 polarization of tumor-associated macrophages (TAMs). The effect of curcumin on the malignant behavior of colorectal cancer cells was investigated by WST assay for cell growth, and Transwell assay for cell migration/invasion. THP-1 cells were differentiated into macrophages and coculture with colorectal cancer cells to study the influence of curcumin on M2 polarization, presenting as the levels of ARG1 mRNA, IL-10, and CD163-positive cells. GEO database was searched for the shared altered gene of curcumin in colorectal cells and human monocytes. Molecular docking was used to visualize the binding between curcumin and MACC1. Curcumin restricted the proliferation, apoptosis, and migration/invasion of HCT 116 and SW620 cells. Curcumin attenuated levels of the M2 macrophage markers, CD163 + cells, IL-10 secretion, and ARG1 mRNA. MACC1 was a target of curcumin in colorectal cancer cells, relating to macrophage. Rescue experiments showed that MACC1 overexpression can reverse the antitumor effect of curcumin in colorectal cancer cells and M2 polarization of TAMs. Curcumin's antiproliferative and anti-migratory effects in colorectal cancer cells may be mediated by MACC1 and inhibition of M2 polarization of TAMs.</p>","PeriodicalId":93931,"journal":{"name":"Chemical biology & drug design","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical biology & drug design","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.14330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The present study was to investigate the underlying mechanism of the antitumor effect of curcumin in colorectal cancer cells, focusing on the M2 polarization of tumor-associated macrophages (TAMs). The effect of curcumin on the malignant behavior of colorectal cancer cells was investigated by WST assay for cell growth, and Transwell assay for cell migration/invasion. THP-1 cells were differentiated into macrophages and coculture with colorectal cancer cells to study the influence of curcumin on M2 polarization, presenting as the levels of ARG1 mRNA, IL-10, and CD163-positive cells. GEO database was searched for the shared altered gene of curcumin in colorectal cells and human monocytes. Molecular docking was used to visualize the binding between curcumin and MACC1. Curcumin restricted the proliferation, apoptosis, and migration/invasion of HCT 116 and SW620 cells. Curcumin attenuated levels of the M2 macrophage markers, CD163 + cells, IL-10 secretion, and ARG1 mRNA. MACC1 was a target of curcumin in colorectal cancer cells, relating to macrophage. Rescue experiments showed that MACC1 overexpression can reverse the antitumor effect of curcumin in colorectal cancer cells and M2 polarization of TAMs. Curcumin's antiproliferative and anti-migratory effects in colorectal cancer cells may be mediated by MACC1 and inhibition of M2 polarization of TAMs.