Lack of Stim2 Affects Vision-Dependent Behavior and Sensitivity to Hypoxia.

IF 1.4 4区 生物学 Q4 DEVELOPMENTAL BIOLOGY
Zebrafish Pub Date : 2023-08-01 DOI:10.1089/zeb.2022.0068
Iga Wasilewska, Łukasz Majewski, Dobrochna Adamek-Urbańska, Shamba S Mondal, Sofiia Baranykova, Rishikesh K Gupta, Dominik Bielecki, Cecilia L Winata, Jacek Kuznicki
{"title":"Lack of Stim2 Affects Vision-Dependent Behavior and Sensitivity to Hypoxia.","authors":"Iga Wasilewska,&nbsp;Łukasz Majewski,&nbsp;Dobrochna Adamek-Urbańska,&nbsp;Shamba S Mondal,&nbsp;Sofiia Baranykova,&nbsp;Rishikesh K Gupta,&nbsp;Dominik Bielecki,&nbsp;Cecilia L Winata,&nbsp;Jacek Kuznicki","doi":"10.1089/zeb.2022.0068","DOIUrl":null,"url":null,"abstract":"<p><p>Stromal interaction molecules (STIMs) are endoplasmic reticulum-resident proteins that regulate Ca<sup>2+</sup> homeostasis and signaling by store-operated calcium entry (SOCE). The different properties and functions of STIM1 and STIM2 have been described mostly based on work <i>in vitro</i>. <i>STIM2</i> knockout mice do not survive until adulthood. Therefore, we generated and characterized <i>stim2a</i> and <i>stim2b</i> double-knockout zebrafish. The (<i>stim2a;stim2b</i>)<sup>-/-</sup> zebrafish did not have any apparent morphological phenotype. However, RNA sequencing revealed 1424 differentially expressed genes. One of the most upregulated genes was <i>annexin A3a</i>, which is a marker of activated microglia. This corresponded well to an increase in Neutral Red staining in the <i>in vivo</i> imaging of the (<i>stim2a;stim2b</i>)<sup>-/-</sup> zebrafish brain. The lack of Stim2 decreased zebrafish survival under low oxygen conditions. Behavioral tests, such as the visual-motor response test and dark-light preference test, indicated that (<i>stim2a;stim2b</i>)<sup>-/-</sup> larvae might have problems with vision. This was consistent with the downregulation of many genes that are related to light perception. The periodic acid-Schiff staining of retina sections from adult zebrafish revealed alterations of the stratum pigmentosum, suggesting the involvement of a Stim2-dependent process in visual perception. Altogether, these data reveal new functions for Stim2 in the nervous system.</p>","PeriodicalId":23872,"journal":{"name":"Zebrafish","volume":"20 4","pages":"146-159"},"PeriodicalIF":1.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zebrafish","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2022.0068","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Stromal interaction molecules (STIMs) are endoplasmic reticulum-resident proteins that regulate Ca2+ homeostasis and signaling by store-operated calcium entry (SOCE). The different properties and functions of STIM1 and STIM2 have been described mostly based on work in vitro. STIM2 knockout mice do not survive until adulthood. Therefore, we generated and characterized stim2a and stim2b double-knockout zebrafish. The (stim2a;stim2b)-/- zebrafish did not have any apparent morphological phenotype. However, RNA sequencing revealed 1424 differentially expressed genes. One of the most upregulated genes was annexin A3a, which is a marker of activated microglia. This corresponded well to an increase in Neutral Red staining in the in vivo imaging of the (stim2a;stim2b)-/- zebrafish brain. The lack of Stim2 decreased zebrafish survival under low oxygen conditions. Behavioral tests, such as the visual-motor response test and dark-light preference test, indicated that (stim2a;stim2b)-/- larvae might have problems with vision. This was consistent with the downregulation of many genes that are related to light perception. The periodic acid-Schiff staining of retina sections from adult zebrafish revealed alterations of the stratum pigmentosum, suggesting the involvement of a Stim2-dependent process in visual perception. Altogether, these data reveal new functions for Stim2 in the nervous system.

缺乏刺激会影响视觉依赖行为和对缺氧的敏感性。
基质相互作用分子(STIMs)是内质网驻留蛋白,通过储存操作的钙进入(SOCE)调节Ca2+稳态和信号传导。STIM1和STIM2的不同性质和功能主要是基于体外工作描述的。STIM2基因敲除小鼠不能存活到成年。因此,我们产生并表征了stim2a和stim2b双敲除斑马鱼。(stim2a;stim2b)-/-斑马鱼没有任何明显的形态学表型。然而,RNA测序揭示了1424个差异表达基因。膜联蛋白A3a是上调最多的基因之一,它是活化小胶质细胞的标志物。这与(stim2a;stim2b)-/-斑马鱼大脑的体内成像中中性红染色的增加非常一致。缺乏Stim2降低了斑马鱼在低氧条件下的存活率。行为测试,如视觉运动反应测试和暗光偏好测试,表明(刺激2a;刺激2b)-/-幼虫可能有视力问题。这与许多与光感相关的基因的下调是一致的。成年斑马鱼视网膜切片的周期性酸性Schiff染色显示了色素层的改变,表明视觉感知中存在Stim2依赖性过程。总之,这些数据揭示了Stim2在神经系统中的新功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Zebrafish
Zebrafish DEVELOPMENTAL BIOLOGY-ZOOLOGY
CiteScore
3.60
自引率
5.00%
发文量
29
审稿时长
3 months
期刊介绍: Zebrafish is the only peer-reviewed journal dedicated to the central role of zebrafish and other aquarium species as models for the study of vertebrate development, evolution, toxicology, and human disease. Due to its prolific reproduction and the external development of the transparent embryo, the zebrafish is a prime model for genetic and developmental studies. While genetically more distant from humans, the vertebrate zebrafish nevertheless has comparable organs and tissues, such as heart, kidney, pancreas, bones, and cartilage. Zebrafish introduced the new section TechnoFish, which highlights these innovations for the general zebrafish community. TechnoFish features two types of articles: TechnoFish Previews: Important, generally useful technical advances or valuable transgenic lines TechnoFish Methods: Brief descriptions of new methods, reagents, or transgenic lines that will be of widespread use in the zebrafish community Zebrafish coverage includes: Comparative genomics and evolution Molecular/cellular mechanisms of cell growth Genetic analysis of embryogenesis and disease Toxicological and infectious disease models Models for neurological disorders and aging New methods, tools, and experimental approaches Zebrafish also includes research with other aquarium species such as medaka, Fugu, and Xiphophorus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信