Tatjana Škrbić, Achille Giacometti, Trinh X Hoang, Amos Maritan, Jayanth R Banavar
{"title":"II. Geometrical framework for thinking about globular proteins: The power of poking.","authors":"Tatjana Škrbić, Achille Giacometti, Trinh X Hoang, Amos Maritan, Jayanth R Banavar","doi":"10.1002/prot.26566","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, we presented a framework for understanding protein structure based on the idea that simple constructs of holding hands or touching of objects can be used to rationalize the common characteristics of globular proteins. We developed a consistent approach for understanding the formation of the two key common building blocks of helices and sheets as well as the compatible assembly of secondary structures into the tertiary structure through the notion of poking pairwise interactions. Here we benchmark our predictions with a detailed analysis of structural data of over 4000 proteins from the Protein Data Bank. We also present the results of detailed computer simulations of a simplified model demonstrating a pre-sculpted free energy landscape, determined by geometry and symmetry, comprising numerous minima corresponding to putative native state structures. We explore the consequences of our model. Our results suggest that symmetry and geometry are a powerful guide to capture the simplicity underlying protein complexity.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":"160-175"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26566","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, we presented a framework for understanding protein structure based on the idea that simple constructs of holding hands or touching of objects can be used to rationalize the common characteristics of globular proteins. We developed a consistent approach for understanding the formation of the two key common building blocks of helices and sheets as well as the compatible assembly of secondary structures into the tertiary structure through the notion of poking pairwise interactions. Here we benchmark our predictions with a detailed analysis of structural data of over 4000 proteins from the Protein Data Bank. We also present the results of detailed computer simulations of a simplified model demonstrating a pre-sculpted free energy landscape, determined by geometry and symmetry, comprising numerous minima corresponding to putative native state structures. We explore the consequences of our model. Our results suggest that symmetry and geometry are a powerful guide to capture the simplicity underlying protein complexity.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.