{"title":"Not Only Expansion: Proline Content and Density Also Induce Disordered Protein Conformation Compaction","authors":"Milan Kumar Hazra, Yishai Gilron, Yaakov Levy","doi":"10.1016/j.jmb.2023.168196","DOIUrl":null,"url":null,"abstract":"<div><p>Intrinsically disordered proteins (IDPs) adopt a wide array of different conformations that can be constrained by the presence of proline residues, which are frequently found in IDPs. To assess the effects of proline, we designed a series of peptides that differ with respect to the number of prolines in the sequence and their organization. Using high-resolution atomistic molecular dynamics simulations, we found that accounting for whether the proline residues are clustered or isolated contributed significantly to explaining deviations in the experimentally-determined gyration radii of IDPs from the values expected based on the Flory scaling-law. By contrast, total proline content makes smaller contribution to explaining the effect of prolines on IDP conformation. Proline residues exhibit opposing effects depending on their organizational pattern in the IDP sequence. Clustered prolines (<em>i.e</em>., prolines with ≤2 intervening non-proline residues) result in expanded peptide conformations whereas isolated prolines (<em>i.e</em>., prolines with >2 intervening non-proline residues) impose compacted conformations. Clustered prolines were estimated to induce an expansion of ∼20% in IDP dimension (via formation of PPII structural elements) whereas isolated prolines were estimated to induce a compaction of ∼10% in IDP dimension (via the formation of backbone turns). This dual role of prolines provides a mechanism for conformational switching that does not rely on the kinetically much slower isomerization of <em>cis</em> proline to the <em>trans</em> form. Bioinformatic analysis demonstrates high populations of both isolated and clustered prolines and implementing them in coarse-grained molecular dynamics models illustrates that they improve the characterization of the conformational ensembles of IDPs.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"435 17","pages":"Article 168196"},"PeriodicalIF":4.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283623002954","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intrinsically disordered proteins (IDPs) adopt a wide array of different conformations that can be constrained by the presence of proline residues, which are frequently found in IDPs. To assess the effects of proline, we designed a series of peptides that differ with respect to the number of prolines in the sequence and their organization. Using high-resolution atomistic molecular dynamics simulations, we found that accounting for whether the proline residues are clustered or isolated contributed significantly to explaining deviations in the experimentally-determined gyration radii of IDPs from the values expected based on the Flory scaling-law. By contrast, total proline content makes smaller contribution to explaining the effect of prolines on IDP conformation. Proline residues exhibit opposing effects depending on their organizational pattern in the IDP sequence. Clustered prolines (i.e., prolines with ≤2 intervening non-proline residues) result in expanded peptide conformations whereas isolated prolines (i.e., prolines with >2 intervening non-proline residues) impose compacted conformations. Clustered prolines were estimated to induce an expansion of ∼20% in IDP dimension (via formation of PPII structural elements) whereas isolated prolines were estimated to induce a compaction of ∼10% in IDP dimension (via the formation of backbone turns). This dual role of prolines provides a mechanism for conformational switching that does not rely on the kinetically much slower isomerization of cis proline to the trans form. Bioinformatic analysis demonstrates high populations of both isolated and clustered prolines and implementing them in coarse-grained molecular dynamics models illustrates that they improve the characterization of the conformational ensembles of IDPs.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.