{"title":"Learning Optimal Group-structured Individualized Treatment Rules with Many Treatments.","authors":"Haixu Ma, Donglin Zeng, Yufeng Liu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Data driven individualized decision making problems have received a lot of attentions in recent years. In particular, decision makers aim to determine the optimal Individualized Treatment Rule (ITR) so that the expected specified outcome averaging over heterogeneous patient-specific characteristics is maximized. Many existing methods deal with binary or a moderate number of treatment arms and may not take potential treatment effect structure into account. However, the effectiveness of these methods may deteriorate when the number of treatment arms becomes large. In this article, we propose GRoup Outcome Weighted Learning (GROWL) to estimate the latent structure in the treatment space and the optimal group-structured ITRs through a single optimization. In particular, for estimating group-structured ITRs, we utilize the Reinforced Angle based Multicategory Support Vector Machines (RAMSVM) to learn group-based decision rules under the weighted angle based multi-class classification framework. Fisher consistency, the excess risk bound, and the convergence rate of the value function are established to provide a theoretical guarantee for GROWL. Extensive empirical results in simulation studies and real data analysis demonstrate that GROWL enjoys better performance than several other existing methods.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10426767/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Learning Research","FirstCategoryId":"94","ListUrlMain":"","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Data driven individualized decision making problems have received a lot of attentions in recent years. In particular, decision makers aim to determine the optimal Individualized Treatment Rule (ITR) so that the expected specified outcome averaging over heterogeneous patient-specific characteristics is maximized. Many existing methods deal with binary or a moderate number of treatment arms and may not take potential treatment effect structure into account. However, the effectiveness of these methods may deteriorate when the number of treatment arms becomes large. In this article, we propose GRoup Outcome Weighted Learning (GROWL) to estimate the latent structure in the treatment space and the optimal group-structured ITRs through a single optimization. In particular, for estimating group-structured ITRs, we utilize the Reinforced Angle based Multicategory Support Vector Machines (RAMSVM) to learn group-based decision rules under the weighted angle based multi-class classification framework. Fisher consistency, the excess risk bound, and the convergence rate of the value function are established to provide a theoretical guarantee for GROWL. Extensive empirical results in simulation studies and real data analysis demonstrate that GROWL enjoys better performance than several other existing methods.
期刊介绍:
The Journal of Machine Learning Research (JMLR) provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online.
JMLR has a commitment to rigorous yet rapid reviewing.
JMLR seeks previously unpublished papers on machine learning that contain:
new principled algorithms with sound empirical validation, and with justification of theoretical, psychological, or biological nature;
experimental and/or theoretical studies yielding new insight into the design and behavior of learning in intelligent systems;
accounts of applications of existing techniques that shed light on the strengths and weaknesses of the methods;
formalization of new learning tasks (e.g., in the context of new applications) and of methods for assessing performance on those tasks;
development of new analytical frameworks that advance theoretical studies of practical learning methods;
computational models of data from natural learning systems at the behavioral or neural level; or extremely well-written surveys of existing work.