{"title":"Capturing the onset of oral processing: Merging of a model food emulsion drop with saliva","authors":"Eleni Aidonidou, Iasmi Kalathaki, Vassilis Karageorgiou, Christos Ritzoulis","doi":"10.1111/jtxs.12752","DOIUrl":null,"url":null,"abstract":"<p>The events occurring before and during the merging of a model liquid food emulsion with saliva have been captured ex vivo using confocal microscopy. In the order of a few seconds, millimeter-sized drops of liquid food and saliva touch and are deformed; the two surfaces eventually collapse, resulting in the merging of the two phases, in a process reminiscent of emulsion droplets coalescing. The model droplets then surge into saliva. Based on this, two distinct stages can be distinguished for the insertion of a liquid food into the oral cavity: A first phase where two intact phases co-exist, and the individual viscosities and saliva–liquid food tribology should be important to texture perception; and a second stage, dominated by the rheological properties of the liquid food–saliva mixture. The importance of the surface properties of saliva and liquid food are highlighted, as they may influence the merging of the two phases.</p>","PeriodicalId":17175,"journal":{"name":"Journal of texture studies","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtxs.12752","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of texture studies","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtxs.12752","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The events occurring before and during the merging of a model liquid food emulsion with saliva have been captured ex vivo using confocal microscopy. In the order of a few seconds, millimeter-sized drops of liquid food and saliva touch and are deformed; the two surfaces eventually collapse, resulting in the merging of the two phases, in a process reminiscent of emulsion droplets coalescing. The model droplets then surge into saliva. Based on this, two distinct stages can be distinguished for the insertion of a liquid food into the oral cavity: A first phase where two intact phases co-exist, and the individual viscosities and saliva–liquid food tribology should be important to texture perception; and a second stage, dominated by the rheological properties of the liquid food–saliva mixture. The importance of the surface properties of saliva and liquid food are highlighted, as they may influence the merging of the two phases.
期刊介绍:
The Journal of Texture Studies is a fully peer-reviewed international journal specialized in the physics, physiology, and psychology of food oral processing, with an emphasis on the food texture and structure, sensory perception and mouth-feel, food oral behaviour, food liking and preference. The journal was first published in 1969 and has been the primary source for disseminating advances in knowledge on all of the sciences that relate to food texture. In recent years, Journal of Texture Studies has expanded its coverage to a much broader range of texture research and continues to publish high quality original and innovative experimental-based (including numerical analysis and simulation) research concerned with all aspects of eating and food preference.
Journal of Texture Studies welcomes research articles, research notes, reviews, discussion papers, and communications from contributors of all relevant disciplines. Some key coverage areas/topics include (but not limited to):
• Physical, mechanical, and micro-structural principles of food texture
• Oral physiology
• Psychology and brain responses of eating and food sensory
• Food texture design and modification for specific consumers
• In vitro and in vivo studies of eating and swallowing
• Novel technologies and methodologies for the assessment of sensory properties
• Simulation and numerical analysis of eating and swallowing