Factorization of person response profiles to identify summative profiles carrying central response patterns.

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY
Psychological methods Pub Date : 2024-08-01 Epub Date: 2023-03-27 DOI:10.1037/met0000568
Se-Kang Kim
{"title":"Factorization of person response profiles to identify summative profiles carrying central response patterns.","authors":"Se-Kang Kim","doi":"10.1037/met0000568","DOIUrl":null,"url":null,"abstract":"<p><p>A data matrix, where rows represent persons and columns represent measured subtests, can be viewed as a stack of person profiles, as rows are actually person profiles of observed responses on column subtests. Profile analysis seeks to identify a small number of latent profiles from a large number of person response profiles to identify central response patterns, which are useful for assessing the strengths and weaknesses of individuals across multiple dimensions in domains of interest. Moreover, the latent profiles are mathematically proven to be summative profiles that linearly combine all person response profiles. Since person response profiles are confounded with profile level and response pattern, the level effect must be controlled when they are factorized to identify a latent (or summative) profile that carries the response pattern effect. However, when the level effect is dominant but uncontrolled, only a summative profile carrying the level effect would be considered statistically meaningful according to a traditional metric (e.g., eigenvalue ≥ 1) or parallel analysis results. Nevertheless, the response pattern effect among individuals can provide assessment-relevant insights that are overlooked by conventional analysis; to achieve this, the level effect must be controlled. Consequently, the purpose of this study is to demonstrate how to correctly identify summative profiles containing central response patterns regardless of the centering techniques used on data sets. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":"723-730"},"PeriodicalIF":7.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000568","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A data matrix, where rows represent persons and columns represent measured subtests, can be viewed as a stack of person profiles, as rows are actually person profiles of observed responses on column subtests. Profile analysis seeks to identify a small number of latent profiles from a large number of person response profiles to identify central response patterns, which are useful for assessing the strengths and weaknesses of individuals across multiple dimensions in domains of interest. Moreover, the latent profiles are mathematically proven to be summative profiles that linearly combine all person response profiles. Since person response profiles are confounded with profile level and response pattern, the level effect must be controlled when they are factorized to identify a latent (or summative) profile that carries the response pattern effect. However, when the level effect is dominant but uncontrolled, only a summative profile carrying the level effect would be considered statistically meaningful according to a traditional metric (e.g., eigenvalue ≥ 1) or parallel analysis results. Nevertheless, the response pattern effect among individuals can provide assessment-relevant insights that are overlooked by conventional analysis; to achieve this, the level effect must be controlled. Consequently, the purpose of this study is to demonstrate how to correctly identify summative profiles containing central response patterns regardless of the centering techniques used on data sets. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

对人的反应特征进行因式分解,以确定包含中心反应模式的总结性特征。
数据矩阵的行代表人,列代表测量的子测试,可以看作是一堆人的特征,因为行实际上是在列子测试中观察到的反应的人的特征。轮廓分析旨在从大量的个人反应轮廓中识别出少量的潜在轮廓,从而确定中心反应模式,这对于评估个人在相关领域多个维度上的优势和劣势非常有用。此外,潜特征在数学上被证明是线性组合所有个人反应特征的总和特征。由于人的反应特征与特征水平和反应模式相混淆,因此在对其进行因子化时,必须控制水平效应,以确定携带反应模式效应的潜在(或求和)特征。然而,当水平效应占主导地位但不受控制时,根据传统指标(如特征值≥ 1)或平行分析结果,只有携带水平效应的求和轮廓才会被认为具有统计意义。然而,个体间的反应模式效应可以提供传统分析所忽略的与评估相关的见解;要实现这一点,必须控制水平效应。因此,本研究的目的是演示如何正确识别包含中心反应模式的终结性概况,而不管数据集上使用的中心化技术如何。(PsycInfo 数据库记录 (c) 2024 APA,保留所有权利)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信