{"title":"Determining the late effect parameter in the Fleming-Harrington test using asymptotic relative efficiency in cancer immunotherapy clinical trials.","authors":"Yuichiro Kaneko, Satoshi Morita","doi":"10.1080/10543406.2023.2244055","DOIUrl":null,"url":null,"abstract":"<p><p>The delayed treatment effect, which manifests as a separation of survival curves after a change point, has often been observed in immunotherapy clinical trials. A late effect of this kind may violate the proportional hazards assumption, resulting in the non-negligible loss of statistical power of an ordinary log-rank test when comparing survival curves. The Fleming-Harrington (FH) test, a weighted log-rank test, is configured to mitigate the loss of power by incorporating a weight function with two parameters, one each for early and late treatment effects. The two parameters need to be appropriately determined, but no helpful guides have been fully established. Since the late effect is expected in immunotherapy trials, we focus on the late effect parameter in this study. We consider parameterizing the late effect in a readily interpretable fashion and determining the optimal late effect parameter in the FH test to maintain statistical power in reference to the asymptotic relative efficiency (ARE). The optimization is carried out under three lag models (i.e. linear, threshold, and generalized linear lag), where the optimal weights are proportional to the lag functions characterized by the change points. Extensive simulation studies showed that the FH test with the selected late parameter reliably provided sufficient power even when the change points in the lag models were misspecified. This finding suggests that the FH test with the ARE-guided late parameter may be a reasonable and practical choice for the primary analysis in immunotherapy clinical trials.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"626-645"},"PeriodicalIF":1.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2023.2244055","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/10 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The delayed treatment effect, which manifests as a separation of survival curves after a change point, has often been observed in immunotherapy clinical trials. A late effect of this kind may violate the proportional hazards assumption, resulting in the non-negligible loss of statistical power of an ordinary log-rank test when comparing survival curves. The Fleming-Harrington (FH) test, a weighted log-rank test, is configured to mitigate the loss of power by incorporating a weight function with two parameters, one each for early and late treatment effects. The two parameters need to be appropriately determined, but no helpful guides have been fully established. Since the late effect is expected in immunotherapy trials, we focus on the late effect parameter in this study. We consider parameterizing the late effect in a readily interpretable fashion and determining the optimal late effect parameter in the FH test to maintain statistical power in reference to the asymptotic relative efficiency (ARE). The optimization is carried out under three lag models (i.e. linear, threshold, and generalized linear lag), where the optimal weights are proportional to the lag functions characterized by the change points. Extensive simulation studies showed that the FH test with the selected late parameter reliably provided sufficient power even when the change points in the lag models were misspecified. This finding suggests that the FH test with the ARE-guided late parameter may be a reasonable and practical choice for the primary analysis in immunotherapy clinical trials.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.