Jack Hedberg, Adam Studebaker, Luke Smith, Chun-Yu Chen, Jesse J Westfall, Maren Cam, Amy Gross, Ilse Hernandez-Aguirre, Alexia Martin, Doyeon Kim, Ravi Dhital, Yeaseul Kim, Ryan D Roberts, Timothy P Cripe, Elaine R Mardis, Kevin A Cassady, Jeffrey Leonard, Katherine E Miller
{"title":"Oncolytic virus-driven immune remodeling revealed in mouse medulloblastomas at single cell resolution.","authors":"Jack Hedberg, Adam Studebaker, Luke Smith, Chun-Yu Chen, Jesse J Westfall, Maren Cam, Amy Gross, Ilse Hernandez-Aguirre, Alexia Martin, Doyeon Kim, Ravi Dhital, Yeaseul Kim, Ryan D Roberts, Timothy P Cripe, Elaine R Mardis, Kevin A Cassady, Jeffrey Leonard, Katherine E Miller","doi":"10.1016/j.omto.2023.07.006","DOIUrl":null,"url":null,"abstract":"<p><p>Oncolytic viruses, modified for tumor-restricted infection, are a promising cancer immunotherapeutic, yet much remains to be understood about factors driving their activity and outcome in the tumor microenvironment. Here, we report that oncolytic herpes simplex virus C134, previously found to exert T cell-dependent efficacy in mouse models of glioblastoma, exerts T cell-independent efficacy in mouse models of medulloblastoma, indicating this oncolytic virus uses different mechanisms in different tumors. We investigated C134's behavior in mouse medulloblastomas, using single cell RNA sequencing to map C134-induced gene expression changes across cell types, timepoints, and medulloblastoma subgroup models at whole-transcriptome resolution. Our work details substantial oncolytic virus-induced transcriptional remodeling of medulloblastoma-infiltrating immune cells, 10 subpopulations of monocytes and macrophages collectively demonstrating M1-like responses to C134, and suggests C134 be investigated as a potential new therapy for medulloblastoma.</p>","PeriodicalId":18869,"journal":{"name":"Molecular Therapy Oncolytics","volume":"30 ","pages":"39-55"},"PeriodicalIF":5.3000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/29/3f/main.PMC10424001.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy Oncolytics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omto.2023.07.006","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/21 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Oncolytic viruses, modified for tumor-restricted infection, are a promising cancer immunotherapeutic, yet much remains to be understood about factors driving their activity and outcome in the tumor microenvironment. Here, we report that oncolytic herpes simplex virus C134, previously found to exert T cell-dependent efficacy in mouse models of glioblastoma, exerts T cell-independent efficacy in mouse models of medulloblastoma, indicating this oncolytic virus uses different mechanisms in different tumors. We investigated C134's behavior in mouse medulloblastomas, using single cell RNA sequencing to map C134-induced gene expression changes across cell types, timepoints, and medulloblastoma subgroup models at whole-transcriptome resolution. Our work details substantial oncolytic virus-induced transcriptional remodeling of medulloblastoma-infiltrating immune cells, 10 subpopulations of monocytes and macrophages collectively demonstrating M1-like responses to C134, and suggests C134 be investigated as a potential new therapy for medulloblastoma.
期刊介绍:
Molecular Therapy — Oncolytics is an international, online-only, open access journal focusing on the development and clinical testing of viral, cellular, and other biological therapies targeting cancer.