A Selective Review on Random Survival Forests for High Dimensional Data.

Hong Wang, Gang Li
{"title":"A Selective Review on Random Survival Forests for High Dimensional Data.","authors":"Hong Wang,&nbsp;Gang Li","doi":"10.22283/qbs.2017.36.2.85","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past decades, there has been considerable interest in applying statistical machine learning methods in survival analysis. Ensemble based approaches, especially random survival forests, have been developed in a variety of contexts due to their high precision and non-parametric nature. This article aims to provide a timely review on recent developments and applications of random survival forests for time-to-event data with high dimensional covariates. This selective review begins with an introduction to the random survival forest framework, followed by a survey of recent developments on splitting criteria, variable selection, and other advanced topics of random survival forests for time-to-event data in high dimensional settings. We also discuss potential research directions for future research.</p>","PeriodicalId":74627,"journal":{"name":"Quantitative bio-science","volume":"36 2","pages":"85-96"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6364686/pdf/nihms-986727.pdf","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative bio-science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22283/qbs.2017.36.2.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

Abstract

Over the past decades, there has been considerable interest in applying statistical machine learning methods in survival analysis. Ensemble based approaches, especially random survival forests, have been developed in a variety of contexts due to their high precision and non-parametric nature. This article aims to provide a timely review on recent developments and applications of random survival forests for time-to-event data with high dimensional covariates. This selective review begins with an introduction to the random survival forest framework, followed by a survey of recent developments on splitting criteria, variable selection, and other advanced topics of random survival forests for time-to-event data in high dimensional settings. We also discuss potential research directions for future research.

Abstract Image

Abstract Image

Abstract Image

高维数据随机生存森林的选择性回顾。
在过去的几十年里,人们对将统计机器学习方法应用于生存分析产生了相当大的兴趣。基于集合的方法,特别是随机生存森林,由于其高精度和非参数性,已经在各种情况下得到了发展。本文旨在及时回顾具有高维协变量的时间-事件数据的随机生存森林的最新发展和应用。这篇选择性综述首先介绍了随机生存森林框架,然后调查了高维环境中随机生存森林的分裂标准、变量选择和其他高级主题的最新发展,以获取时间到事件的数据。我们还讨论了未来研究的潜在研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信