Aditya Singh, Vaseem Ahamad Ansari, Tarique Mahmood, Farogh Ahsan, Rufaida Wasim, Mohammad Shariq, Saba Parveen, Shubhrat Maheshwari
{"title":"Receptor for Advanced Glycation End Products: Dementia and Cognitive Impairment.","authors":"Aditya Singh, Vaseem Ahamad Ansari, Tarique Mahmood, Farogh Ahsan, Rufaida Wasim, Mohammad Shariq, Saba Parveen, Shubhrat Maheshwari","doi":"10.1055/a-2015-8041","DOIUrl":null,"url":null,"abstract":"<p><p>The pathophysiological processes of dementia and cognitive impairment are linked to advanced glycation end products (AGEs) and their receptor (RAGE).The neurofibrillary tangles (NFTs) of abnormally hyperphosphorylated tau protein and senile plaques (SPs), which are brought on by amyloid beta (Aβ) deposition, are the hallmarks of Alzheimer's disease (AD), a progressive neurodegenerative condition. Advanced glycation end products that are produced as a result of vascular dysfunction are bound by the receptor for advanced glycation end products (RAGE). Dementia and cognitive impairment could develop when RAGE binds to Aβ and produces reactive oxygen species, aggravating Aβ buildup and ultimately resulting in SPs and NFTs. RAGE could be a more powerful biomarker than Aβ because it is implicated in early AD. The resident immune cells in the brain known as microglia are essential for healthy brain function. Microglia is prominent in the amyloid plaques' outside border as well as their central region in Alzheimer's disease. Microglial cells, in the opinion of some authors, actively contribute to the formation of amyloid plaques. In this review, we first discuss the early diagnosis of dementia and cognitive impairment, and then detail the interaction between RAGE and Aβ and Tau that is necessary to cause dementia and cognitive impairment pathology, and it is anticipated that the creation of RAGE probes will help in the diagnosis and treatment of dementia and cognitive impairment.</p>","PeriodicalId":11451,"journal":{"name":"Drug Research","volume":"73 5","pages":"247-250"},"PeriodicalIF":1.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-2015-8041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 2
Abstract
The pathophysiological processes of dementia and cognitive impairment are linked to advanced glycation end products (AGEs) and their receptor (RAGE).The neurofibrillary tangles (NFTs) of abnormally hyperphosphorylated tau protein and senile plaques (SPs), which are brought on by amyloid beta (Aβ) deposition, are the hallmarks of Alzheimer's disease (AD), a progressive neurodegenerative condition. Advanced glycation end products that are produced as a result of vascular dysfunction are bound by the receptor for advanced glycation end products (RAGE). Dementia and cognitive impairment could develop when RAGE binds to Aβ and produces reactive oxygen species, aggravating Aβ buildup and ultimately resulting in SPs and NFTs. RAGE could be a more powerful biomarker than Aβ because it is implicated in early AD. The resident immune cells in the brain known as microglia are essential for healthy brain function. Microglia is prominent in the amyloid plaques' outside border as well as their central region in Alzheimer's disease. Microglial cells, in the opinion of some authors, actively contribute to the formation of amyloid plaques. In this review, we first discuss the early diagnosis of dementia and cognitive impairment, and then detail the interaction between RAGE and Aβ and Tau that is necessary to cause dementia and cognitive impairment pathology, and it is anticipated that the creation of RAGE probes will help in the diagnosis and treatment of dementia and cognitive impairment.
期刊介绍:
Drug Research (formerly Arzneimittelforschung) is an international peer-reviewed journal with expedited processing times presenting the very latest research results related to novel and established drug molecules and the evaluation of new drug development. A key focus of the publication is translational medicine and the application of biological discoveries in the development of drugs for use in the clinical environment. Articles and experimental data from across the field of drug research address not only the issue of drug discovery, but also the mathematical and statistical methods for evaluating results from industrial investigations and clinical trials. Publishing twelve times a year, Drug Research includes original research articles as well as reviews, commentaries and short communications in the following areas: analytics applied to clinical trials chemistry and biochemistry clinical and experimental pharmacology drug interactions efficacy testing pharmacodynamics pharmacokinetics teratology toxicology.