Equivariant Spherical Deconvolution: Learning Sparse Orientation Distribution Functions from Spherical Data.

Axel Elaldi, Neel Dey, Heejong Kim, Guido Gerig
{"title":"Equivariant Spherical Deconvolution: Learning Sparse Orientation Distribution Functions from Spherical Data.","authors":"Axel Elaldi,&nbsp;Neel Dey,&nbsp;Heejong Kim,&nbsp;Guido Gerig","doi":"10.1007/978-3-030-78191-0_21","DOIUrl":null,"url":null,"abstract":"<p><p>We present a rotation-equivariant self-supervised learning framework for the sparse deconvolution of non-negative scalar fields on the unit sphere. Spherical signals with multiple peaks naturally arise in Diffusion MRI (dMRI), where each voxel consists of one or more signal sources corresponding to anisotropic tissue structure such as white matter. Due to spatial and spectral partial voluming, clinically-feasible dMRI struggles to resolve crossing-fiber white matter configurations, leading to extensive development in spherical deconvolution methodology to recover underlying fiber directions. However, these methods are typically linear and struggle with small crossing-angles and partial volume fraction estimation. In this work, we improve on current methodologies by nonlinearly estimating fiber structures via self-supervised spherical convolutional networks with guaranteed equivariance to spherical rotation. We perform validation via extensive single and multi-shell synthetic benchmarks demonstrating competitive performance against common base-lines. We further show improved downstream performance on fiber tractography measures on the Tractometer benchmark dataset. Finally, we show downstream improvements in terms of tractography and partial volume estimation on a multi-shell dataset of human subjects.</p>","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"12729 ","pages":"267-278"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422024/pdf/nihms-1922058.pdf","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information processing in medical imaging : proceedings of the ... conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-78191-0_21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We present a rotation-equivariant self-supervised learning framework for the sparse deconvolution of non-negative scalar fields on the unit sphere. Spherical signals with multiple peaks naturally arise in Diffusion MRI (dMRI), where each voxel consists of one or more signal sources corresponding to anisotropic tissue structure such as white matter. Due to spatial and spectral partial voluming, clinically-feasible dMRI struggles to resolve crossing-fiber white matter configurations, leading to extensive development in spherical deconvolution methodology to recover underlying fiber directions. However, these methods are typically linear and struggle with small crossing-angles and partial volume fraction estimation. In this work, we improve on current methodologies by nonlinearly estimating fiber structures via self-supervised spherical convolutional networks with guaranteed equivariance to spherical rotation. We perform validation via extensive single and multi-shell synthetic benchmarks demonstrating competitive performance against common base-lines. We further show improved downstream performance on fiber tractography measures on the Tractometer benchmark dataset. Finally, we show downstream improvements in terms of tractography and partial volume estimation on a multi-shell dataset of human subjects.

等变球面反卷积:从球面数据中学习稀疏方向分布函数。
提出了单位球上非负标量场稀疏反卷积的旋转等变自监督学习框架。具有多峰的球形信号在扩散MRI (dMRI)中自然出现,其中每个体素由一个或多个与各向异性组织结构(如白质)相对应的信号源组成。由于空间和光谱部分体积,临床上可行的dMRI难以解决交叉纤维白质结构,导致球形反褶积方法的广泛发展,以恢复潜在的纤维方向。然而,这些方法通常是线性的,并且难以进行小的交叉角和部分体积分数估计。在这项工作中,我们改进了现有的方法,通过保证球旋转等方差的自监督球面卷积网络非线性估计纤维结构。我们通过广泛的单壳和多壳合成基准进行验证,展示了与普通基线相比的竞争性能。我们在Tractometer基准数据集上进一步展示了光纤牵引测量的下游性能改进。最后,我们在人类受试者的多壳数据集上展示了在示踪和部分体积估计方面的下游改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信