Computing the Multicover Bifiltration.

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Discrete & Computational Geometry Pub Date : 2023-01-01 Epub Date: 2023-02-20 DOI:10.1007/s00454-022-00476-8
René Corbet, Michael Kerber, Michael Lesnick, Georg Osang
{"title":"Computing the Multicover Bifiltration.","authors":"René Corbet,&nbsp;Michael Kerber,&nbsp;Michael Lesnick,&nbsp;Georg Osang","doi":"10.1007/s00454-022-00476-8","DOIUrl":null,"url":null,"abstract":"<p><p>Given a finite set <math><mrow><mi>A</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mi>d</mi></msup></mrow></math>, let <math><msub><mtext>Cov</mtext><mrow><mi>r</mi><mo>,</mo><mi>k</mi></mrow></msub></math> denote the set of all points within distance <i>r</i> to at least <i>k</i> points of <i>A</i>. Allowing <i>r</i> and <i>k</i> to vary, we obtain a 2-parameter family of spaces that grow larger when <i>r</i> increases or <i>k</i> decreases, called the <i>multicover bifiltration</i>. Motivated by the problem of computing the homology of this bifiltration, we introduce two closely related combinatorial bifiltrations, one polyhedral and the other simplicial, which are both topologically equivalent to the multicover bifiltration and far smaller than a Čech-based model considered in prior work of Sheehy. Our polyhedral construction is a bifiltration of the <i>rhomboid tiling</i> of Edelsbrunner and Osang, and can be efficiently computed using a variant of an algorithm given by these authors. Using an implementation for dimension 2 and 3, we provide experimental results. Our simplicial construction is useful for understanding the polyhedral construction and proving its correctness.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"70 2","pages":"376-405"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423148/pdf/","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-022-00476-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 15

Abstract

Given a finite set ARd, let Covr,k denote the set of all points within distance r to at least k points of A. Allowing r and k to vary, we obtain a 2-parameter family of spaces that grow larger when r increases or k decreases, called the multicover bifiltration. Motivated by the problem of computing the homology of this bifiltration, we introduce two closely related combinatorial bifiltrations, one polyhedral and the other simplicial, which are both topologically equivalent to the multicover bifiltration and far smaller than a Čech-based model considered in prior work of Sheehy. Our polyhedral construction is a bifiltration of the rhomboid tiling of Edelsbrunner and Osang, and can be efficiently computed using a variant of an algorithm given by these authors. Using an implementation for dimension 2 and 3, we provide experimental results. Our simplicial construction is useful for understanding the polyhedral construction and proving its correctness.

Abstract Image

Abstract Image

Abstract Image

计算Multicover Bifiltration。
给定有限集合a⊂Rd,设Covr,k表示距离r到a的至少k个点内的所有点的集合。允许r和k变化,我们得到了一个2-参数空间族,当r增加或k减少时,该空间族会变大,称为多重二重过滤。受计算这种二重过滤的同源性问题的启发,我们引入了两种密切相关的组合二重过滤,一种是多面体,另一种是单纯形,它们在拓扑上都等价于多重二重过滤,并且远小于Sheehy先前工作中考虑的基于Čech的模型。我们的多面体构造是Edelsbrunner和Osang的菱形平铺的二重过滤,并且可以使用这些作者给出的算法的变体来有效地计算。使用维度2和维度3的实现,我们提供了实验结果。我们的单纯形构造有助于理解多面体构造并证明其正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信