M Arockiaraj, D Paul, J Clement, S Tigga, K Jacob, K Balasubramanian
{"title":"Novel molecular hybrid geometric-harmonic-Zagreb degree based descriptors and their efficacy in QSPR studies of polycyclic aromatic hydrocarbons.","authors":"M Arockiaraj, D Paul, J Clement, S Tigga, K Jacob, K Balasubramanian","doi":"10.1080/1062936X.2023.2239149","DOIUrl":null,"url":null,"abstract":"<p><p>The physicochemical characteristics of polycyclic aromatic compounds critical to environmental modelling such as octanol partition coefficients, solubility, lipophilicity, polarity and several equilibrium constants are functions of their underlying molecular structures, prompting the development of mathematical models to predict such characteristics for which experimental results are difficult to obtain. We propose twelve novel descriptors derived from geometric, harmonic and Zagreb degree-based descriptors and then test the effectiveness of these descriptors on a data set consisting of 55 benzenoid hydrocarbons of environmental importance. Our computations show that the proposed descriptors have a good linear correlation and predictive power when compared to the degree and distance type descriptors. We have also derived the QSPR expressions for four properties of a large series of polycyclic aromatics arising from circumscribing coronenes and show that a scaling factor can be deduced to derive physicochemical properties of such series up to 2D graphene sheets.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":"34 7","pages":"569-589"},"PeriodicalIF":2.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2023.2239149","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
The physicochemical characteristics of polycyclic aromatic compounds critical to environmental modelling such as octanol partition coefficients, solubility, lipophilicity, polarity and several equilibrium constants are functions of their underlying molecular structures, prompting the development of mathematical models to predict such characteristics for which experimental results are difficult to obtain. We propose twelve novel descriptors derived from geometric, harmonic and Zagreb degree-based descriptors and then test the effectiveness of these descriptors on a data set consisting of 55 benzenoid hydrocarbons of environmental importance. Our computations show that the proposed descriptors have a good linear correlation and predictive power when compared to the degree and distance type descriptors. We have also derived the QSPR expressions for four properties of a large series of polycyclic aromatics arising from circumscribing coronenes and show that a scaling factor can be deduced to derive physicochemical properties of such series up to 2D graphene sheets.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.