Daniel J Rees, Luke Roberts, M Carla Carisi, Alwena H Morgan, M Rowan Brown, Jeffrey S Davies
下载PDF
{"title":"Automated Quantification of Mitochondrial Fragmentation in an In Vitro Parkinson's Disease Model.","authors":"Daniel J Rees, Luke Roberts, M Carla Carisi, Alwena H Morgan, M Rowan Brown, Jeffrey S Davies","doi":"10.1002/cpns.105","DOIUrl":null,"url":null,"abstract":"<p><p>Neuronal mitochondrial fragmentation is a phenotype exhibited in models of neurodegeneration such as Parkinson's disease. Delineating the dysfunction in mitochondrial dynamics found in diseased states can aid our understanding of underlying mechanisms of disease progression and possibly identify novel therapeutic approaches. Advances in microscopy and the availability of intuitive open-access software have accelerated the rate of image acquisition and analysis, respectively. These developments allow routine biology researchers to rapidly turn hypotheses into results. In this protocol, we describe the utilization of cell culture techniques, high-content imaging (HCI), and the subsequent open-source image analysis pipeline for the quantification of mitochondrial fragmentation in the context of a rotenone-based in vitro Parkinson's disease model. © 2020 The Authors. Basic Protocol 1: SN4741 neuron culture and treatment in a rotenone-based model of Parkinson's disease Basic Protocol 2: Identification of cell nuclei, measurement of mitochondrial membrane potential, and measurement of mitochondrial fragmentation in mouse-derived midbrain dopaminergic neurons.</p>","PeriodicalId":40016,"journal":{"name":"Current Protocols in Neuroscience","volume":"94 1","pages":"e105"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpns.105","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cpns.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 2
引用
批量引用
Abstract
Neuronal mitochondrial fragmentation is a phenotype exhibited in models of neurodegeneration such as Parkinson's disease. Delineating the dysfunction in mitochondrial dynamics found in diseased states can aid our understanding of underlying mechanisms of disease progression and possibly identify novel therapeutic approaches. Advances in microscopy and the availability of intuitive open-access software have accelerated the rate of image acquisition and analysis, respectively. These developments allow routine biology researchers to rapidly turn hypotheses into results. In this protocol, we describe the utilization of cell culture techniques, high-content imaging (HCI), and the subsequent open-source image analysis pipeline for the quantification of mitochondrial fragmentation in the context of a rotenone-based in vitro Parkinson's disease model. © 2020 The Authors. Basic Protocol 1: SN4741 neuron culture and treatment in a rotenone-based model of Parkinson's disease Basic Protocol 2: Identification of cell nuclei, measurement of mitochondrial membrane potential, and measurement of mitochondrial fragmentation in mouse-derived midbrain dopaminergic neurons.
体外帕金森病模型中线粒体断裂的自动量化
神经元线粒体断裂是帕金森病等神经退行性疾病模型中表现出的一种表型。描述在患病状态下发现的线粒体动力学功能障碍可以帮助我们理解疾病进展的潜在机制,并可能确定新的治疗方法。显微镜技术的进步和直观的开放获取软件的可用性分别加快了图像采集和分析的速度。这些发展使常规生物学研究人员能够迅速将假设转化为结果。在本协议中,我们描述了利用细胞培养技术,高含量成像(HCI),以及随后的开源图像分析管道,在鱼藤酮为基础的体外帕金森病模型的背景下量化线粒体碎片。©2020作者。基本方案1:在基于鱼tenone的帕金森病模型中SN4741神经元的培养和治疗基本方案2:在小鼠来源的中脑多巴胺能神经元中鉴定细胞核、测量线粒体膜电位和测量线粒体断裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。