SLC26A3/NHERF2-IκB/NFκB/p65 feedback loop suppresses tumorigenesis and metastasis in colorectal cancer.

IF 5.9 2区 医学 Q1 ONCOLOGY
Chunlin Lin, Penghang Lin, Huayan Lin, Hengxin Yao, Songyi Liu, Ruofan He, Hui Chen, Zuhong Teng, Robert M Hoffman, Jianxin Ye, Guangwei Zhu
{"title":"SLC26A3/NHERF2-IκB/NFκB/p65 feedback loop suppresses tumorigenesis and metastasis in colorectal cancer.","authors":"Chunlin Lin, Penghang Lin, Huayan Lin, Hengxin Yao, Songyi Liu, Ruofan He, Hui Chen, Zuhong Teng, Robert M Hoffman, Jianxin Ye, Guangwei Zhu","doi":"10.1038/s41389-023-00488-w","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) is a formidable disease due to the intricate mechanisms that drive its proliferation and metastasis. Despite significant progress in cancer research, the integration of these mechanisms that influence cancer cell behavior remains elusive. Therefore, it is imperative to comprehensively elucidate the underlying mechanisms driving CRC proliferation and metastasis. In this study, we reported a novel role of SLC26A3 in suppressing CRC progression. We found that SLC26A3 expression was downregulated in CRC, which was proportionally correlated with survival. Our in vivo and in vitro experiments demonstrated that up-regulation of SLC26A3 inhibited CRC proliferation and metastasis, while down-regulation of SLC26A3 promoted CRC progression by modulating the expression level of IκB. Furthermore, we identified NHERF2 as a novel interacting protein of SLC26A3 responsible for stabilizing the IκB protein and removing ubiquitination modification. Mechanistically, SLC26A3 augmented the interaction between NHERF2 and IκB, subsequently reducing its degradation. This process inhibited the dissociation of p65 from the IκB/p65/p50 complex and reduced the translocation of p65 from the cytoplasm to the nucleus. Moreover, our investigation revealed that NF-κB/p65 directly bound to the promoter of SLC26A3, leading to a decline in its mRNA expression. Thus, SLC26A3 impeded the nuclear translocation of NF-κB/p65, enhancing the transcription of SLC26A3 and establishing a positive regulatory feedback loop in CRC cells. Collectively, these results suggest that a SLC26A3/NHERF2-IκB/NF-κB/p65 signaling loop suppresses proliferation and metastasis in CRC cells. These findings propose a novel SLC26A3-driven signaling loop that regulates proliferation and metastasis in CRC, providing promising therapeutic interventions and prognostic targets for the management of CRC.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"12 1","pages":"41"},"PeriodicalIF":5.9000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423209/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41389-023-00488-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Colorectal cancer (CRC) is a formidable disease due to the intricate mechanisms that drive its proliferation and metastasis. Despite significant progress in cancer research, the integration of these mechanisms that influence cancer cell behavior remains elusive. Therefore, it is imperative to comprehensively elucidate the underlying mechanisms driving CRC proliferation and metastasis. In this study, we reported a novel role of SLC26A3 in suppressing CRC progression. We found that SLC26A3 expression was downregulated in CRC, which was proportionally correlated with survival. Our in vivo and in vitro experiments demonstrated that up-regulation of SLC26A3 inhibited CRC proliferation and metastasis, while down-regulation of SLC26A3 promoted CRC progression by modulating the expression level of IκB. Furthermore, we identified NHERF2 as a novel interacting protein of SLC26A3 responsible for stabilizing the IκB protein and removing ubiquitination modification. Mechanistically, SLC26A3 augmented the interaction between NHERF2 and IκB, subsequently reducing its degradation. This process inhibited the dissociation of p65 from the IκB/p65/p50 complex and reduced the translocation of p65 from the cytoplasm to the nucleus. Moreover, our investigation revealed that NF-κB/p65 directly bound to the promoter of SLC26A3, leading to a decline in its mRNA expression. Thus, SLC26A3 impeded the nuclear translocation of NF-κB/p65, enhancing the transcription of SLC26A3 and establishing a positive regulatory feedback loop in CRC cells. Collectively, these results suggest that a SLC26A3/NHERF2-IκB/NF-κB/p65 signaling loop suppresses proliferation and metastasis in CRC cells. These findings propose a novel SLC26A3-driven signaling loop that regulates proliferation and metastasis in CRC, providing promising therapeutic interventions and prognostic targets for the management of CRC.

Abstract Image

SLC26A3/ nherf2 - i - κ b / nf - κ b /p65反馈回路抑制结直肠癌的肿瘤发生和转移
结直肠癌(CRC)是一种可怕的疾病,由于其复杂的机制驱动其增殖和转移。尽管癌症研究取得了重大进展,但影响癌细胞行为的这些机制的整合仍然难以捉摸。因此,全面阐明CRC增殖和转移的潜在机制势在必行。在这项研究中,我们报道了SLC26A3在抑制结直肠癌进展中的新作用。我们发现SLC26A3在结直肠癌中表达下调,与生存率成比例相关。我们的体内和体外实验表明,上调SLC26A3抑制结直肠癌的增殖和转移,下调SLC26A3通过调节i - κ b的表达水平促进结直肠癌的进展。此外,我们发现NHERF2是SLC26A3的一种新的相互作用蛋白,负责稳定IκB蛋白并去除泛素化修饰。在机制上,SLC26A3增强了NHERF2和i - κ b之间的相互作用,随后减少了其降解。这一过程抑制了p65与IκB/p65/p50复合物的分离,减少了p65从细胞质向细胞核的易位。此外,我们的研究发现NF-κB/p65直接结合SLC26A3的启动子,导致其mRNA表达下降。因此,SLC26A3阻碍了NF-κB/p65的核易位,增强了SLC26A3的转录,并在CRC细胞中建立了正调节反馈回路。综上所述,这些结果表明SLC26A3/ nherf2 - i -κB/ NF-κB/p65信号环抑制结直肠癌细胞的增殖和转移。这些发现提出了一种新的slc26a3驱动的信号环,可以调节CRC的增殖和转移,为CRC的治疗提供了有希望的治疗干预措施和预后靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Oncogenesis
Oncogenesis ONCOLOGY-
CiteScore
11.90
自引率
0.00%
发文量
70
审稿时长
26 weeks
期刊介绍: Oncogenesis is a peer-reviewed open access online journal that publishes full-length papers, reviews, and short communications exploring the molecular basis of cancer and related phenomena. It seeks to promote diverse and integrated areas of molecular biology, cell biology, oncology, and genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信