人类携带mcr-1阳性大肠杆菌群体动态的基因组转移

IF 11.5 2区 生物学 Q1 GENETICS & HEREDITY
Yingbo Shen , Rong Zhang , Dongyan Shao , Lu Yang , Jiayue Lu , Congcong Liu , Xueyang Wang , Junyao Jiang , Boxuan Wang , Congming Wu , Julian Parkhill , Yang Wang , Timothy R. Walsh , George F. Gao , Zhangqi Shen
{"title":"人类携带mcr-1阳性大肠杆菌群体动态的基因组转移","authors":"Yingbo Shen ,&nbsp;Rong Zhang ,&nbsp;Dongyan Shao ,&nbsp;Lu Yang ,&nbsp;Jiayue Lu ,&nbsp;Congcong Liu ,&nbsp;Xueyang Wang ,&nbsp;Junyao Jiang ,&nbsp;Boxuan Wang ,&nbsp;Congming Wu ,&nbsp;Julian Parkhill ,&nbsp;Yang Wang ,&nbsp;Timothy R. Walsh ,&nbsp;George F. Gao ,&nbsp;Zhangqi Shen","doi":"10.1016/j.gpb.2022.11.006","DOIUrl":null,"url":null,"abstract":"<div><p>Emergence of the <strong>colistin</strong> resistance gene, <strong><em>mcr</em>-<em>1</em></strong>, has attracted worldwide attention. Despite the prevalence of <em>mcr</em>-<em>1</em>-positive <strong><em>Escherichia coli</em></strong> (MCRPEC) strains in <strong>human</strong> carriage showing a significant decrease between 2016 and 2019, genetic differences in MCRPEC strains remain largely unknown. We therefore conducted a comparative <strong>genomic</strong> study on MCRPEC strains from fecal samples of healthy human subjects in 2016 and 2019. We identified three major differences in MCRPEC strains between these two time points. First, the insertion sequence IS<em>Apl1</em> was often deleted and the percentage of <em>mcr</em>-<em>1</em>-carrying IncI2 plasmids was increased in MCRPEC strains in 2019. Second, the antibiotic resistance genes (ARGs), <em>aac(3)-IVa</em> and <em>bla</em><sub>CTX-M-1</sub>, emerged and coexisted with <em>mcr</em>-<em>1</em> in 2019. Third, MCRPEC strains in 2019 contained more virulence genes, resulting in an increased proportion of extraintestinal pathogenic <em>E. coli</em> (ExPEC) strains (36.1%) in MCRPEC strains in 2019 compared to that in 2016 (10.5%), implying that these strains could occupy intestinal ecological niches by competing with other commensal bacteria. Our results suggest that despite the significant reduction in the prevalence of MCRPEC strains in humans from 2016 to 2019, MCRPEC exhibits increased resistance to other clinically important ARGs and contains more virulence genes, which may pose a potential public health threat.</p></div>","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":"20 6","pages":"Pages 1168-1179"},"PeriodicalIF":11.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/bf/33/main.PMC10225485.pdf","citationCount":"3","resultStr":"{\"title\":\"Genomic Shift in Population Dynamics of mcr-1-positive Escherichia coli in Human Carriage\",\"authors\":\"Yingbo Shen ,&nbsp;Rong Zhang ,&nbsp;Dongyan Shao ,&nbsp;Lu Yang ,&nbsp;Jiayue Lu ,&nbsp;Congcong Liu ,&nbsp;Xueyang Wang ,&nbsp;Junyao Jiang ,&nbsp;Boxuan Wang ,&nbsp;Congming Wu ,&nbsp;Julian Parkhill ,&nbsp;Yang Wang ,&nbsp;Timothy R. Walsh ,&nbsp;George F. Gao ,&nbsp;Zhangqi Shen\",\"doi\":\"10.1016/j.gpb.2022.11.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Emergence of the <strong>colistin</strong> resistance gene, <strong><em>mcr</em>-<em>1</em></strong>, has attracted worldwide attention. Despite the prevalence of <em>mcr</em>-<em>1</em>-positive <strong><em>Escherichia coli</em></strong> (MCRPEC) strains in <strong>human</strong> carriage showing a significant decrease between 2016 and 2019, genetic differences in MCRPEC strains remain largely unknown. We therefore conducted a comparative <strong>genomic</strong> study on MCRPEC strains from fecal samples of healthy human subjects in 2016 and 2019. We identified three major differences in MCRPEC strains between these two time points. First, the insertion sequence IS<em>Apl1</em> was often deleted and the percentage of <em>mcr</em>-<em>1</em>-carrying IncI2 plasmids was increased in MCRPEC strains in 2019. Second, the antibiotic resistance genes (ARGs), <em>aac(3)-IVa</em> and <em>bla</em><sub>CTX-M-1</sub>, emerged and coexisted with <em>mcr</em>-<em>1</em> in 2019. Third, MCRPEC strains in 2019 contained more virulence genes, resulting in an increased proportion of extraintestinal pathogenic <em>E. coli</em> (ExPEC) strains (36.1%) in MCRPEC strains in 2019 compared to that in 2016 (10.5%), implying that these strains could occupy intestinal ecological niches by competing with other commensal bacteria. Our results suggest that despite the significant reduction in the prevalence of MCRPEC strains in humans from 2016 to 2019, MCRPEC exhibits increased resistance to other clinically important ARGs and contains more virulence genes, which may pose a potential public health threat.</p></div>\",\"PeriodicalId\":12528,\"journal\":{\"name\":\"Genomics, Proteomics & Bioinformatics\",\"volume\":\"20 6\",\"pages\":\"Pages 1168-1179\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/bf/33/main.PMC10225485.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics, Proteomics & Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1672022922001474\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, Proteomics & Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672022922001474","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 3

摘要

粘菌素耐药基因mcr-1的出现引起了全世界的关注。尽管在2016年至2019年期间,人类携带的mcr-1阳性大肠杆菌(MCRPEC)菌株的流行率显着下降,但MCRPEC菌株的遗传差异在很大程度上仍然未知。因此,我们于2016年和2019年对健康人类粪便样本中的MCRPEC菌株进行了比较基因组研究。在这两个时间点之间,我们确定了MCRPEC菌株的三个主要差异。首先,2019年MCRPEC菌株中插入序列ISApl1经常被删除,携带mcr-1的IncI2质粒比例增加。二是抗生素耐药基因(ARGs) aac(3)-IVa和blaCTX-M-1在2019年出现并与mcr-1共存。第三,2019年MCRPEC菌株含有更多的毒力基因,导致2019年MCRPEC菌株中肠外致病性大肠杆菌(ExPEC)菌株的比例(36.1%)高于2016年的10.5%,这意味着这些菌株可以通过与其他共生菌竞争来占领肠道生态位。我们的研究结果表明,尽管从2016年到2019年,MCRPEC菌株在人类中的流行率显著降低,但MCRPEC对其他临床重要ARGs的耐药性增强,并且含有更多的毒力基因,这可能构成潜在的公共卫生威胁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Genomic Shift in Population Dynamics of mcr-1-positive Escherichia coli in Human Carriage

Genomic Shift in Population Dynamics of mcr-1-positive Escherichia coli in Human Carriage

Genomic Shift in Population Dynamics of mcr-1-positive Escherichia coli in Human Carriage

Genomic Shift in Population Dynamics of mcr-1-positive Escherichia coli in Human Carriage

Emergence of the colistin resistance gene, mcr-1, has attracted worldwide attention. Despite the prevalence of mcr-1-positive Escherichia coli (MCRPEC) strains in human carriage showing a significant decrease between 2016 and 2019, genetic differences in MCRPEC strains remain largely unknown. We therefore conducted a comparative genomic study on MCRPEC strains from fecal samples of healthy human subjects in 2016 and 2019. We identified three major differences in MCRPEC strains between these two time points. First, the insertion sequence ISApl1 was often deleted and the percentage of mcr-1-carrying IncI2 plasmids was increased in MCRPEC strains in 2019. Second, the antibiotic resistance genes (ARGs), aac(3)-IVa and blaCTX-M-1, emerged and coexisted with mcr-1 in 2019. Third, MCRPEC strains in 2019 contained more virulence genes, resulting in an increased proportion of extraintestinal pathogenic E. coli (ExPEC) strains (36.1%) in MCRPEC strains in 2019 compared to that in 2016 (10.5%), implying that these strains could occupy intestinal ecological niches by competing with other commensal bacteria. Our results suggest that despite the significant reduction in the prevalence of MCRPEC strains in humans from 2016 to 2019, MCRPEC exhibits increased resistance to other clinically important ARGs and contains more virulence genes, which may pose a potential public health threat.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genomics, Proteomics & Bioinformatics
Genomics, Proteomics & Bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
14.30
自引率
4.20%
发文量
844
审稿时长
61 days
期刊介绍: Genomics, Proteomics and Bioinformatics (GPB) is the official journal of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. It aims to disseminate new developments in the field of omics and bioinformatics, publish high-quality discoveries quickly, and promote open access and online publication. GPB welcomes submissions in all areas of life science, biology, and biomedicine, with a focus on large data acquisition, analysis, and curation. Manuscripts covering omics and related bioinformatics topics are particularly encouraged. GPB is indexed/abstracted by PubMed/MEDLINE, PubMed Central, Scopus, BIOSIS Previews, Chemical Abstracts, CSCD, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信