John R Klem, Tae-Hwi Schwantes-An, Marco Abreu, Michael Suttie, Raeden Gray, Hieu Vo, Grace Conley, Tatiana M Foroud, Leah Wetherill, C Ben Lovely
{"title":"骨形态发生蛋白信号通路的突变使斑马鱼和人类对乙醇诱导的颌骨畸形敏感。","authors":"John R Klem, Tae-Hwi Schwantes-An, Marco Abreu, Michael Suttie, Raeden Gray, Hieu Vo, Grace Conley, Tatiana M Foroud, Leah Wetherill, C Ben Lovely","doi":"10.1101/2023.06.28.546932","DOIUrl":null,"url":null,"abstract":"<p><p>Fetal Alcohol Spectrum Disorders (FASD) describe ethanol-induced developmental defects including craniofacial malformations. While ethanol-sensitive genetic mutations contribute to facial malformations, the impacted cellular mechanisms remain unknown. Bmp signaling is a key regulator of epithelial morphogenesis driving facial development, providing a possible ethanol-sensitive mechanism. We found that zebrafish mutants for Bmp signaling components are ethanol-sensitive and affect anterior pharyngeal endoderm shape and gene expression, indicating ethanol-induced malformations of the anterior pharyngeal endoderm cause facial malformations. Integrating FASD patient data, we provide the first evidence that variants in the human Bmp receptor gene <i>BMPR1B</i> associate with ethanol-related differences in jaw volume. Our results show that ethanol exposure disrupts proper morphogenesis of, and tissue interactions between, facial epithelia that mirror overall viscerocranial shape changes and are predictive for Bmp-ethanol associations in human jaw development. Our data provide a mechanistic paradigm linking ethanol to disrupted epithelial cell behaviors that underlie facial defects in FASD.</p><p><strong>Summary statement: </strong>In this study, we apply a unique combination of zebrafish-based approaches and human genetic and facial dysmorphology analyses to resolve the cellular mechanisms driven by the ethanol-sensitive Bmp pathway.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327032/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mutations in the Bone Morphogenetic Protein signaling pathway sensitize zebrafish and humans to ethanol-induced jaw malformations.\",\"authors\":\"John R Klem, Tae-Hwi Schwantes-An, Marco Abreu, Michael Suttie, Raeden Gray, Hieu Vo, Grace Conley, Tatiana M Foroud, Leah Wetherill, C Ben Lovely\",\"doi\":\"10.1101/2023.06.28.546932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fetal Alcohol Spectrum Disorders (FASD) describe ethanol-induced developmental defects including craniofacial malformations. While ethanol-sensitive genetic mutations contribute to facial malformations, the impacted cellular mechanisms remain unknown. Bmp signaling is a key regulator of epithelial morphogenesis driving facial development, providing a possible ethanol-sensitive mechanism. We found that zebrafish mutants for Bmp signaling components are ethanol-sensitive and affect anterior pharyngeal endoderm shape and gene expression, indicating ethanol-induced malformations of the anterior pharyngeal endoderm cause facial malformations. Integrating FASD patient data, we provide the first evidence that variants in the human Bmp receptor gene <i>BMPR1B</i> associate with ethanol-related differences in jaw volume. Our results show that ethanol exposure disrupts proper morphogenesis of, and tissue interactions between, facial epithelia that mirror overall viscerocranial shape changes and are predictive for Bmp-ethanol associations in human jaw development. Our data provide a mechanistic paradigm linking ethanol to disrupted epithelial cell behaviors that underlie facial defects in FASD.</p><p><strong>Summary statement: </strong>In this study, we apply a unique combination of zebrafish-based approaches and human genetic and facial dysmorphology analyses to resolve the cellular mechanisms driven by the ethanol-sensitive Bmp pathway.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327032/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.06.28.546932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.06.28.546932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mutations in the Bone Morphogenetic Protein signaling pathway sensitize zebrafish and humans to ethanol-induced jaw malformations.
Fetal Alcohol Spectrum Disorders (FASD) describe ethanol-induced developmental defects including craniofacial malformations. While ethanol-sensitive genetic mutations contribute to facial malformations, the impacted cellular mechanisms remain unknown. Bmp signaling is a key regulator of epithelial morphogenesis driving facial development, providing a possible ethanol-sensitive mechanism. We found that zebrafish mutants for Bmp signaling components are ethanol-sensitive and affect anterior pharyngeal endoderm shape and gene expression, indicating ethanol-induced malformations of the anterior pharyngeal endoderm cause facial malformations. Integrating FASD patient data, we provide the first evidence that variants in the human Bmp receptor gene BMPR1B associate with ethanol-related differences in jaw volume. Our results show that ethanol exposure disrupts proper morphogenesis of, and tissue interactions between, facial epithelia that mirror overall viscerocranial shape changes and are predictive for Bmp-ethanol associations in human jaw development. Our data provide a mechanistic paradigm linking ethanol to disrupted epithelial cell behaviors that underlie facial defects in FASD.
Summary statement: In this study, we apply a unique combination of zebrafish-based approaches and human genetic and facial dysmorphology analyses to resolve the cellular mechanisms driven by the ethanol-sensitive Bmp pathway.