通过多孔介质的磁流体动力学达西-福希海默边界层辐射流的优化分析

IF 0.9 Q3 MATHEMATICS, APPLIED
Muhammad Jawad, Anwar Saeed, Zahir Shah, Saeed Islam, Poom Kumam
{"title":"通过多孔介质的磁流体动力学达西-福希海默边界层辐射流的优化分析","authors":"Muhammad Jawad,&nbsp;Anwar Saeed,&nbsp;Zahir Shah,&nbsp;Saeed Islam,&nbsp;Poom Kumam","doi":"10.1002/cmm4.1136","DOIUrl":null,"url":null,"abstract":"<p>In this article, the study of magnetohydrodynamics Darcy-Forchheimer flow is carried out. Viscous dissipation and thermal radiation are also deliberated for the flow system over a stretching and porous surface. Buongiorno model has been utilized to elaborate thermophoresis and Brownian dispersion impacts. The physical quantities such as viscosity, density, and specific heat play a key role in liquid flow behavior. The modeled equations are transformed to nonlinear ordinary differential equations and then solved by semi-analytical technique HAM. It is found in this assessment that expanding estimations of the magnetic parameter builds Lorentz force and henceforth decreases the velocity profile. Moreover, velocity is also a reducing function of porosity and inertial parameters. The temperature of nanofluid diminishes with enhancement in the Prandtl number and porosity parameter while it increases with Brownian motion, radiation, thermophoretic parameters, and Brinkman number. The concentration profile is a growing function of the thermophoretic parameter and a reducing function of the Brownian motion parameter and Lewis number.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmm4.1136","citationCount":"2","resultStr":"{\"title\":\"An optimal analysis for magnetohydrodynamics Darcy-Forchheimer boundary layer radiative flow past a porous medium\",\"authors\":\"Muhammad Jawad,&nbsp;Anwar Saeed,&nbsp;Zahir Shah,&nbsp;Saeed Islam,&nbsp;Poom Kumam\",\"doi\":\"10.1002/cmm4.1136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, the study of magnetohydrodynamics Darcy-Forchheimer flow is carried out. Viscous dissipation and thermal radiation are also deliberated for the flow system over a stretching and porous surface. Buongiorno model has been utilized to elaborate thermophoresis and Brownian dispersion impacts. The physical quantities such as viscosity, density, and specific heat play a key role in liquid flow behavior. The modeled equations are transformed to nonlinear ordinary differential equations and then solved by semi-analytical technique HAM. It is found in this assessment that expanding estimations of the magnetic parameter builds Lorentz force and henceforth decreases the velocity profile. Moreover, velocity is also a reducing function of porosity and inertial parameters. The temperature of nanofluid diminishes with enhancement in the Prandtl number and porosity parameter while it increases with Brownian motion, radiation, thermophoretic parameters, and Brinkman number. The concentration profile is a growing function of the thermophoretic parameter and a reducing function of the Brownian motion parameter and Lewis number.</p>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cmm4.1136\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

本文对磁流体动力学中的达西-福希海默流进行了研究。对于拉伸多孔表面的流动系统,还考虑了粘性耗散和热辐射。利用Buongiorno模型来阐述热泳动和布朗色散的影响。粘度、密度和比热等物理量对液体的流动行为起着关键作用。将模型方程转化为非线性常微分方程,用半解析法求解。在这个评估中发现,对磁参数的扩展估计建立了洛伦兹力,因此降低了速度剖面。此外,速度也是孔隙度和惯性参数的约简函数。纳米流体的温度随普朗特数和孔隙度参数的增加而降低,随布朗运动、辐射、热泳参数和布林克曼数的增加而升高。浓度分布是热泳参数的增长函数,是布朗运动参数和路易斯数的减少函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An optimal analysis for magnetohydrodynamics Darcy-Forchheimer boundary layer radiative flow past a porous medium

In this article, the study of magnetohydrodynamics Darcy-Forchheimer flow is carried out. Viscous dissipation and thermal radiation are also deliberated for the flow system over a stretching and porous surface. Buongiorno model has been utilized to elaborate thermophoresis and Brownian dispersion impacts. The physical quantities such as viscosity, density, and specific heat play a key role in liquid flow behavior. The modeled equations are transformed to nonlinear ordinary differential equations and then solved by semi-analytical technique HAM. It is found in this assessment that expanding estimations of the magnetic parameter builds Lorentz force and henceforth decreases the velocity profile. Moreover, velocity is also a reducing function of porosity and inertial parameters. The temperature of nanofluid diminishes with enhancement in the Prandtl number and porosity parameter while it increases with Brownian motion, radiation, thermophoretic parameters, and Brinkman number. The concentration profile is a growing function of the thermophoretic parameter and a reducing function of the Brownian motion parameter and Lewis number.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信