{"title":"可穿戴振动敷料对高血糖大鼠全层创面愈合的影响。","authors":"Daijiro Haba, Takafumi Ohmiya, Masaki Sekino, Qi Qin, Chihiro Takizawa, Sanai Tomida, Takeo Minematsu, Hiromi Sanada, Gojiro Nakagami","doi":"10.1111/wrr.13129","DOIUrl":null,"url":null,"abstract":"<p><p>Local low-frequency vibration promotes blood flow and wound healing in hard-to-heal diabetic foot ulcers (DFUs). However, vibration treatment is challenging in patients with DFUs due to wound management difficulties and low adherence. Consequently, developing wearable self-care devices becomes imperative for effective wound healing. This study introduces a wearable vibration dressing and assesses its impact on wound healing in hyperglycemic rats. Low-frequency vibration at 52 Hz was applied to the wound for 40 min/day in awake rats. Relative wound areas on post-wounding days (PWDs) 4-7 were significantly smaller and the wound closure rate was significantly higher in the vibration group than in the control group (p < 0.05, respectively). The total haemoglobin at baseline and after vibration on post-wounding day 7 was significantly larger in the vibration group than in the control group (p < 0.05). On PWD 7, the thickness of the granulation tissue was significantly higher in the vibration group than in the control group (p < 0.05). Moreover, the number of blood vessels at the wound site and vascular endothelial growth factor A protein expression were significantly higher in the vibration group than in the control group (p < 0.05, respectively). The ratio of (CD68<sup>+</sup> /iNOS<sup>+</sup> )/(CD163<sup>+</sup> ) macrophages in the vibration group was significantly lower than that in the control group (p < 0.05). These results indicate the potential of wearable vibration dressings as new self-care devices that can promote angiogenesis and blood flow, improve inflammation, and enhance wound healing in DFUs.</p>","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":" ","pages":"816-826"},"PeriodicalIF":3.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficacy of wearable vibration dressings on full-thickness wound healing in a hyperglycemic rat model.\",\"authors\":\"Daijiro Haba, Takafumi Ohmiya, Masaki Sekino, Qi Qin, Chihiro Takizawa, Sanai Tomida, Takeo Minematsu, Hiromi Sanada, Gojiro Nakagami\",\"doi\":\"10.1111/wrr.13129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Local low-frequency vibration promotes blood flow and wound healing in hard-to-heal diabetic foot ulcers (DFUs). However, vibration treatment is challenging in patients with DFUs due to wound management difficulties and low adherence. Consequently, developing wearable self-care devices becomes imperative for effective wound healing. This study introduces a wearable vibration dressing and assesses its impact on wound healing in hyperglycemic rats. Low-frequency vibration at 52 Hz was applied to the wound for 40 min/day in awake rats. Relative wound areas on post-wounding days (PWDs) 4-7 were significantly smaller and the wound closure rate was significantly higher in the vibration group than in the control group (p < 0.05, respectively). The total haemoglobin at baseline and after vibration on post-wounding day 7 was significantly larger in the vibration group than in the control group (p < 0.05). On PWD 7, the thickness of the granulation tissue was significantly higher in the vibration group than in the control group (p < 0.05). Moreover, the number of blood vessels at the wound site and vascular endothelial growth factor A protein expression were significantly higher in the vibration group than in the control group (p < 0.05, respectively). The ratio of (CD68<sup>+</sup> /iNOS<sup>+</sup> )/(CD163<sup>+</sup> ) macrophages in the vibration group was significantly lower than that in the control group (p < 0.05). These results indicate the potential of wearable vibration dressings as new self-care devices that can promote angiogenesis and blood flow, improve inflammation, and enhance wound healing in DFUs.</p>\",\"PeriodicalId\":23864,\"journal\":{\"name\":\"Wound Repair and Regeneration\",\"volume\":\" \",\"pages\":\"816-826\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wound Repair and Regeneration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/wrr.13129\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wound Repair and Regeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/wrr.13129","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Efficacy of wearable vibration dressings on full-thickness wound healing in a hyperglycemic rat model.
Local low-frequency vibration promotes blood flow and wound healing in hard-to-heal diabetic foot ulcers (DFUs). However, vibration treatment is challenging in patients with DFUs due to wound management difficulties and low adherence. Consequently, developing wearable self-care devices becomes imperative for effective wound healing. This study introduces a wearable vibration dressing and assesses its impact on wound healing in hyperglycemic rats. Low-frequency vibration at 52 Hz was applied to the wound for 40 min/day in awake rats. Relative wound areas on post-wounding days (PWDs) 4-7 were significantly smaller and the wound closure rate was significantly higher in the vibration group than in the control group (p < 0.05, respectively). The total haemoglobin at baseline and after vibration on post-wounding day 7 was significantly larger in the vibration group than in the control group (p < 0.05). On PWD 7, the thickness of the granulation tissue was significantly higher in the vibration group than in the control group (p < 0.05). Moreover, the number of blood vessels at the wound site and vascular endothelial growth factor A protein expression were significantly higher in the vibration group than in the control group (p < 0.05, respectively). The ratio of (CD68+ /iNOS+ )/(CD163+ ) macrophages in the vibration group was significantly lower than that in the control group (p < 0.05). These results indicate the potential of wearable vibration dressings as new self-care devices that can promote angiogenesis and blood flow, improve inflammation, and enhance wound healing in DFUs.
期刊介绍:
Wound Repair and Regeneration provides extensive international coverage of cellular and molecular biology, connective tissue, and biological mediator studies in the field of tissue repair and regeneration and serves a diverse audience of surgeons, plastic surgeons, dermatologists, biochemists, cell biologists, and others.
Wound Repair and Regeneration is the official journal of The Wound Healing Society, The European Tissue Repair Society, The Japanese Society for Wound Healing, and The Australian Wound Management Association.