结合轨迹一致性和空间一致性增强的时空视频复制检测

Savas Özkan, E. Esen, G. Akar
{"title":"结合轨迹一致性和空间一致性增强的时空视频复制检测","authors":"Savas Özkan, E. Esen, G. Akar","doi":"10.1109/ICIP.2014.7025511","DOIUrl":null,"url":null,"abstract":"The recent improvements on internet technologies and video coding techniques cause an increase in copyright infringements especially for video. Frequently, image-based approaches appear as an essential solution due to the fact that joint usage of quantization-based indexing and weak geometric consistency stages give a capability to compare duplicate videos quickly. However, exploiting purely spatial content ignores the temporal variation of video. In this work, we propose a system that combines the state-of-the-art quantization-based indexing scheme with a novel trajectory-based geometric consistency on spatio-temporal features. This combination improves duplicate video matching task significantly. Briefly, spatial mean and variance of the trajectories are incorporated to establish a weak geometric consistency among pair of frames. To show the success of the proposed method, content-based video copy detection field is selected and TRECVID 2009 dataset is utilized. The experimental results show that constituting trajectory-based consistency on corresponding feature pairs outperforms the performances of merely utilizing spatiotemporal signature and visual signature with enhanced weak geometric consistency.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"50 1","pages":"2527-2531"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Enhanced spatio-temporal video copy detection by combining trajectory and spatial consistency\",\"authors\":\"Savas Özkan, E. Esen, G. Akar\",\"doi\":\"10.1109/ICIP.2014.7025511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent improvements on internet technologies and video coding techniques cause an increase in copyright infringements especially for video. Frequently, image-based approaches appear as an essential solution due to the fact that joint usage of quantization-based indexing and weak geometric consistency stages give a capability to compare duplicate videos quickly. However, exploiting purely spatial content ignores the temporal variation of video. In this work, we propose a system that combines the state-of-the-art quantization-based indexing scheme with a novel trajectory-based geometric consistency on spatio-temporal features. This combination improves duplicate video matching task significantly. Briefly, spatial mean and variance of the trajectories are incorporated to establish a weak geometric consistency among pair of frames. To show the success of the proposed method, content-based video copy detection field is selected and TRECVID 2009 dataset is utilized. The experimental results show that constituting trajectory-based consistency on corresponding feature pairs outperforms the performances of merely utilizing spatiotemporal signature and visual signature with enhanced weak geometric consistency.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"50 1\",\"pages\":\"2527-2531\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7025511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

近年来网络技术和视频编码技术的进步导致了版权侵权的增加,尤其是视频侵权。通常,基于图像的方法是一种基本的解决方案,因为基于量化的索引和弱几何一致性阶段的联合使用提供了快速比较重复视频的能力。然而,单纯利用空间内容忽略了视频的时间变化。在这项工作中,我们提出了一个系统,结合了最先进的基于量化的索引方案和一种新的基于轨迹的时空特征几何一致性。这种组合大大改善了重复视频匹配任务。简单地说,结合轨迹的空间均值和方差来建立一对帧之间的弱几何一致性。为了证明该方法的有效性,我们选择了基于内容的视频拷贝检测字段,并利用了TRECVID 2009数据集。实验结果表明,在相应特征对上构建基于轨迹的一致性优于单纯利用时空特征和增强弱几何一致性的视觉特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced spatio-temporal video copy detection by combining trajectory and spatial consistency
The recent improvements on internet technologies and video coding techniques cause an increase in copyright infringements especially for video. Frequently, image-based approaches appear as an essential solution due to the fact that joint usage of quantization-based indexing and weak geometric consistency stages give a capability to compare duplicate videos quickly. However, exploiting purely spatial content ignores the temporal variation of video. In this work, we propose a system that combines the state-of-the-art quantization-based indexing scheme with a novel trajectory-based geometric consistency on spatio-temporal features. This combination improves duplicate video matching task significantly. Briefly, spatial mean and variance of the trajectories are incorporated to establish a weak geometric consistency among pair of frames. To show the success of the proposed method, content-based video copy detection field is selected and TRECVID 2009 dataset is utilized. The experimental results show that constituting trajectory-based consistency on corresponding feature pairs outperforms the performances of merely utilizing spatiotemporal signature and visual signature with enhanced weak geometric consistency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信