由气体爆轰模型引起的一般分形守恒定律

M. Alfaro, J. Droniou
{"title":"由气体爆轰模型引起的一般分形守恒定律","authors":"M. Alfaro, J. Droniou","doi":"10.1093/AMRX/ABR015","DOIUrl":null,"url":null,"abstract":"We consider a model of cellular detonations in gases. They consist in conservation laws with a non-local pseudo-differential operator whose symbol is asymptotically |ξ|λ, where 0 < λ ≤ 2; it can be decomposed as the λ/2 fractional power of the Laplacian plus a convolution term. After defining the notion of entropy solution, we prove the well-posedness in the L∞ framework. In the case where 1 < λ ≤ 2 we also prove a regularizing effect. In Appendix, we show that the assumptions made to perform the mathematical study are satisfied by the considered physical model of detonations.","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"16 1","pages":"127-151"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"General Fractal Conservation Laws Arising from a Model of Detonations in Gases\",\"authors\":\"M. Alfaro, J. Droniou\",\"doi\":\"10.1093/AMRX/ABR015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a model of cellular detonations in gases. They consist in conservation laws with a non-local pseudo-differential operator whose symbol is asymptotically |ξ|λ, where 0 < λ ≤ 2; it can be decomposed as the λ/2 fractional power of the Laplacian plus a convolution term. After defining the notion of entropy solution, we prove the well-posedness in the L∞ framework. In the case where 1 < λ ≤ 2 we also prove a regularizing effect. In Appendix, we show that the assumptions made to perform the mathematical study are satisfied by the considered physical model of detonations.\",\"PeriodicalId\":89656,\"journal\":{\"name\":\"Applied mathematics research express : AMRX\",\"volume\":\"16 1\",\"pages\":\"127-151\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied mathematics research express : AMRX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/AMRX/ABR015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/AMRX/ABR015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们考虑一个气体中细胞爆炸的模型。它们存在于符号为渐近|ξ|λ的非局部伪微分算子的守恒律中,其中0 < λ≤2;它可以分解为拉普拉斯函数的λ/2次幂加上卷积项。在定义了熵解的概念后,在L∞框架下证明了熵解的适定性。在1 < λ≤2的情况下,我们也证明了正则化效应。在附录中,我们表明,所考虑的爆炸物理模型满足了进行数学研究的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General Fractal Conservation Laws Arising from a Model of Detonations in Gases
We consider a model of cellular detonations in gases. They consist in conservation laws with a non-local pseudo-differential operator whose symbol is asymptotically |ξ|λ, where 0 < λ ≤ 2; it can be decomposed as the λ/2 fractional power of the Laplacian plus a convolution term. After defining the notion of entropy solution, we prove the well-posedness in the L∞ framework. In the case where 1 < λ ≤ 2 we also prove a regularizing effect. In Appendix, we show that the assumptions made to perform the mathematical study are satisfied by the considered physical model of detonations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信