基于主成分分析的进近和着陆阶段飞行参数评估

S. K. Jasra, G. Valentino, A. Muscat, D. Zammit-Mangion, R. Camilleri
{"title":"基于主成分分析的进近和着陆阶段飞行参数评估","authors":"S. K. Jasra, G. Valentino, A. Muscat, D. Zammit-Mangion, R. Camilleri","doi":"10.2514/6.2020-0674","DOIUrl":null,"url":null,"abstract":"This paper adopts an unsupervised learning technique, Principal Component Analysis (PCA) to analyze flight data. While the flight parameters for a stable approach have been established for a while, the paper reevaluates these flight parameters using PCA for a set of airports across the United States of America. Some flight parameters were found to be more sensitive to some airports. The parameters have been cross-checked with experts in the industry to better interpret their significance.","PeriodicalId":93413,"journal":{"name":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","volume":"93 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluation of Flight Parameters During Approach and Landing Phases by Applying Principal Component Analysis\",\"authors\":\"S. K. Jasra, G. Valentino, A. Muscat, D. Zammit-Mangion, R. Camilleri\",\"doi\":\"10.2514/6.2020-0674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper adopts an unsupervised learning technique, Principal Component Analysis (PCA) to analyze flight data. While the flight parameters for a stable approach have been established for a while, the paper reevaluates these flight parameters using PCA for a set of airports across the United States of America. Some flight parameters were found to be more sensitive to some airports. The parameters have been cross-checked with experts in the industry to better interpret their significance.\",\"PeriodicalId\":93413,\"journal\":{\"name\":\"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/6.2020-0674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2020-0674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文采用无监督学习技术——主成分分析(PCA)对飞行数据进行分析。虽然稳定方法的飞行参数已经建立了一段时间,但本文使用PCA对美国的一组机场重新评估了这些飞行参数。研究发现,某些飞行参数对某些机场更为敏感。这些参数已经与业内专家进行了交叉核对,以更好地解释它们的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of Flight Parameters During Approach and Landing Phases by Applying Principal Component Analysis
This paper adopts an unsupervised learning technique, Principal Component Analysis (PCA) to analyze flight data. While the flight parameters for a stable approach have been established for a while, the paper reevaluates these flight parameters using PCA for a set of airports across the United States of America. Some flight parameters were found to be more sensitive to some airports. The parameters have been cross-checked with experts in the industry to better interpret their significance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信