{"title":"完全$L_\\infty$ -代数的规范等价","authors":"Ai Guan","doi":"10.4310/hha.2021.v23.n2.a15","DOIUrl":null,"url":null,"abstract":"We introduce a notion of left homotopy for Maurer--Cartan elements in $L_{\\infty}$-algebras and $A_{\\infty}$-algebras, and show that it corresponds to gauge equivalence in the differential graded case. From this we deduce a short formula for gauge equivalence, and provide an entirely homotopical proof to Schlessinger--Stasheff's theorem. As an application, we answer a question of T. Voronov, proving a non-abelian Poincar\\'e lemma for differential forms taking values in an $L_{\\infty}$-algebra.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"176 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Gauge equivalence for complete $L_\\\\infty$-algebras\",\"authors\":\"Ai Guan\",\"doi\":\"10.4310/hha.2021.v23.n2.a15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a notion of left homotopy for Maurer--Cartan elements in $L_{\\\\infty}$-algebras and $A_{\\\\infty}$-algebras, and show that it corresponds to gauge equivalence in the differential graded case. From this we deduce a short formula for gauge equivalence, and provide an entirely homotopical proof to Schlessinger--Stasheff's theorem. As an application, we answer a question of T. Voronov, proving a non-abelian Poincar\\\\'e lemma for differential forms taking values in an $L_{\\\\infty}$-algebra.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"176 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2021.v23.n2.a15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/hha.2021.v23.n2.a15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gauge equivalence for complete $L_\infty$-algebras
We introduce a notion of left homotopy for Maurer--Cartan elements in $L_{\infty}$-algebras and $A_{\infty}$-algebras, and show that it corresponds to gauge equivalence in the differential graded case. From this we deduce a short formula for gauge equivalence, and provide an entirely homotopical proof to Schlessinger--Stasheff's theorem. As an application, we answer a question of T. Voronov, proving a non-abelian Poincar\'e lemma for differential forms taking values in an $L_{\infty}$-algebra.