完全$L_\infty$ -代数的规范等价

Ai Guan
{"title":"完全$L_\\infty$ -代数的规范等价","authors":"Ai Guan","doi":"10.4310/hha.2021.v23.n2.a15","DOIUrl":null,"url":null,"abstract":"We introduce a notion of left homotopy for Maurer--Cartan elements in $L_{\\infty}$-algebras and $A_{\\infty}$-algebras, and show that it corresponds to gauge equivalence in the differential graded case. From this we deduce a short formula for gauge equivalence, and provide an entirely homotopical proof to Schlessinger--Stasheff's theorem. As an application, we answer a question of T. Voronov, proving a non-abelian Poincar\\'e lemma for differential forms taking values in an $L_{\\infty}$-algebra.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"176 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Gauge equivalence for complete $L_\\\\infty$-algebras\",\"authors\":\"Ai Guan\",\"doi\":\"10.4310/hha.2021.v23.n2.a15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a notion of left homotopy for Maurer--Cartan elements in $L_{\\\\infty}$-algebras and $A_{\\\\infty}$-algebras, and show that it corresponds to gauge equivalence in the differential graded case. From this we deduce a short formula for gauge equivalence, and provide an entirely homotopical proof to Schlessinger--Stasheff's theorem. As an application, we answer a question of T. Voronov, proving a non-abelian Poincar\\\\'e lemma for differential forms taking values in an $L_{\\\\infty}$-algebra.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"176 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2021.v23.n2.a15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/hha.2021.v23.n2.a15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

引入了$L_{\infty}$ -代数和$A_{\infty}$ -代数中Maurer—Cartan元的左同伦概念,并证明了它对应于微分梯度情况下的规范等价。在此基础上,我们推导出了规范等价的一个简短公式,并给出了Schlessinger—Stasheff定理的一个完全同调证明。作为一个应用,我们回答了T. Voronov的一个问题,证明了在$L_{\infty}$ -代数中取值的微分形式的一个非阿贝尔poincarcarr引理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gauge equivalence for complete $L_\infty$-algebras
We introduce a notion of left homotopy for Maurer--Cartan elements in $L_{\infty}$-algebras and $A_{\infty}$-algebras, and show that it corresponds to gauge equivalence in the differential graded case. From this we deduce a short formula for gauge equivalence, and provide an entirely homotopical proof to Schlessinger--Stasheff's theorem. As an application, we answer a question of T. Voronov, proving a non-abelian Poincar\'e lemma for differential forms taking values in an $L_{\infty}$-algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信