基于BP-PSO加权混合算法的智能微电网最优能量管理多智能体架构风电功率预测

Q3 Decision Sciences
Didi Omar Elamine, Maria Serraji, E. Nfaoui, J. Boumhidi
{"title":"基于BP-PSO加权混合算法的智能微电网最优能量管理多智能体架构风电功率预测","authors":"Didi Omar Elamine, Maria Serraji, E. Nfaoui, J. Boumhidi","doi":"10.1504/IJTIP.2016.074228","DOIUrl":null,"url":null,"abstract":"In this paper we present a multi-agent architecture based on wind power prediction using neural network (NN), this process aims to implement smart micro-grid with different generation units like wind turbines and fuel generators. In the proposed architecture this micro-grid can exchange electricity with the main grid therefore it can buy or sell electricity. The main objective is to find the optimal policy using average wind speed prediction for the next hour in order to maximise the benefit and minimise the cost. To forecast the wind speed and taking into account the convergent speed and convergent accuracy, we propose in this paper an NN based on hybrid weighted algorithm combining back-propagation (BP) algorithm with particle swarm optimisation (PSO) algorithm referred to as W-BP-PSO. Finally, for the simulation, the Java Agent Development Framework (JADE) platform is used to implement the approach and analyse the results.","PeriodicalId":52540,"journal":{"name":"International Journal of Technology Intelligence and Planning","volume":"191 1","pages":"20"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Multi-agent architecture for optimal energy management of a smart micro-grid using a weighted hybrid BP-PSO algorithm for wind power prediction\",\"authors\":\"Didi Omar Elamine, Maria Serraji, E. Nfaoui, J. Boumhidi\",\"doi\":\"10.1504/IJTIP.2016.074228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a multi-agent architecture based on wind power prediction using neural network (NN), this process aims to implement smart micro-grid with different generation units like wind turbines and fuel generators. In the proposed architecture this micro-grid can exchange electricity with the main grid therefore it can buy or sell electricity. The main objective is to find the optimal policy using average wind speed prediction for the next hour in order to maximise the benefit and minimise the cost. To forecast the wind speed and taking into account the convergent speed and convergent accuracy, we propose in this paper an NN based on hybrid weighted algorithm combining back-propagation (BP) algorithm with particle swarm optimisation (PSO) algorithm referred to as W-BP-PSO. Finally, for the simulation, the Java Agent Development Framework (JADE) platform is used to implement the approach and analyse the results.\",\"PeriodicalId\":52540,\"journal\":{\"name\":\"International Journal of Technology Intelligence and Planning\",\"volume\":\"191 1\",\"pages\":\"20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Technology Intelligence and Planning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJTIP.2016.074228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Technology Intelligence and Planning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJTIP.2016.074228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种基于神经网络(NN)的风电功率预测的多智能体结构,该过程旨在实现不同发电机组(如风力发电机和燃料发电机)的智能微电网。在提出的架构中,微电网可以与主电网交换电力,因此它可以买卖电力。主要目标是利用预测未来一小时的平均风速找到最优策略,以实现效益最大化和成本最小化。为了预测风速并兼顾收敛速度和收敛精度,本文提出了一种结合反向传播(BP)算法和粒子群优化(PSO)算法的混合加权神经网络,称为W-BP-PSO。最后,在Java Agent Development Framework (JADE)平台上进行了仿真,并对仿真结果进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-agent architecture for optimal energy management of a smart micro-grid using a weighted hybrid BP-PSO algorithm for wind power prediction
In this paper we present a multi-agent architecture based on wind power prediction using neural network (NN), this process aims to implement smart micro-grid with different generation units like wind turbines and fuel generators. In the proposed architecture this micro-grid can exchange electricity with the main grid therefore it can buy or sell electricity. The main objective is to find the optimal policy using average wind speed prediction for the next hour in order to maximise the benefit and minimise the cost. To forecast the wind speed and taking into account the convergent speed and convergent accuracy, we propose in this paper an NN based on hybrid weighted algorithm combining back-propagation (BP) algorithm with particle swarm optimisation (PSO) algorithm referred to as W-BP-PSO. Finally, for the simulation, the Java Agent Development Framework (JADE) platform is used to implement the approach and analyse the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Technology Intelligence and Planning
International Journal of Technology Intelligence and Planning Business, Management and Accounting-Management of Technology and Innovation
CiteScore
3.20
自引率
0.00%
发文量
2
期刊介绍: The IJTIP is a refereed journal that provides an authoritative source of information in the field of technology intelligence, technology planning, R&D resource allocation, technology controlling, technology decision-making processes and related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信