进化模糊黑盒XSS检测

F. Duchene, Sanjay Rawat, J. Richier, Roland Groz
{"title":"进化模糊黑盒XSS检测","authors":"F. Duchene, Sanjay Rawat, J. Richier, Roland Groz","doi":"10.1145/2557547.2557550","DOIUrl":null,"url":null,"abstract":"Fuzz testing consists in automatically generating and sending malicious inputs to an application in order to hopefully trigger a vulnerability. Fuzzing entails such questions as: Where to fuzz? Which parameter to fuzz? Where to observe its effects?\n In this paper, we specifically address the questions: How to fuzz a parameter? How to observe its effects? To address these questions, we propose KameleonFuzz, a black-box Cross Site Scripting (XSS) fuzzer for web applications. KameleonFuzz can not only generate malicious inputs to exploit XSS, but also detect how close it is revealing a vulnerability. The malicious inputs generation and evolution is achieved with a genetic algorithm, guided by an attack grammar. A double taint inference, up to the browser parse tree, permits to detect precisely whether an exploitation attempt succeeded.\n Our evaluation demonstrates no false positives and high XSS revealing capabilities: KameleonFuzz detects several vulnerabilities missed by other black-box scanners.","PeriodicalId":90472,"journal":{"name":"CODASPY : proceedings of the ... ACM conference on data and application security and privacy. ACM Conference on Data and Application Security & Privacy","volume":"7 1","pages":"37-48"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":"{\"title\":\"KameleonFuzz: evolutionary fuzzing for black-box XSS detection\",\"authors\":\"F. Duchene, Sanjay Rawat, J. Richier, Roland Groz\",\"doi\":\"10.1145/2557547.2557550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fuzz testing consists in automatically generating and sending malicious inputs to an application in order to hopefully trigger a vulnerability. Fuzzing entails such questions as: Where to fuzz? Which parameter to fuzz? Where to observe its effects?\\n In this paper, we specifically address the questions: How to fuzz a parameter? How to observe its effects? To address these questions, we propose KameleonFuzz, a black-box Cross Site Scripting (XSS) fuzzer for web applications. KameleonFuzz can not only generate malicious inputs to exploit XSS, but also detect how close it is revealing a vulnerability. The malicious inputs generation and evolution is achieved with a genetic algorithm, guided by an attack grammar. A double taint inference, up to the browser parse tree, permits to detect precisely whether an exploitation attempt succeeded.\\n Our evaluation demonstrates no false positives and high XSS revealing capabilities: KameleonFuzz detects several vulnerabilities missed by other black-box scanners.\",\"PeriodicalId\":90472,\"journal\":{\"name\":\"CODASPY : proceedings of the ... ACM conference on data and application security and privacy. ACM Conference on Data and Application Security & Privacy\",\"volume\":\"7 1\",\"pages\":\"37-48\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"94\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CODASPY : proceedings of the ... ACM conference on data and application security and privacy. ACM Conference on Data and Application Security & Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2557547.2557550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CODASPY : proceedings of the ... ACM conference on data and application security and privacy. ACM Conference on Data and Application Security & Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2557547.2557550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 94

摘要

模糊测试包括自动生成和发送恶意输入到应用程序,以便触发漏洞。模糊处理涉及以下问题:在哪里模糊处理?要模糊哪个参数?在哪里观察它的效果?在本文中,我们专门讨论了以下问题:如何模糊参数?如何观察其效果?为了解决这些问题,我们提出了KameleonFuzz,一个用于web应用程序的黑盒跨站点脚本(XSS)模糊器。KameleonFuzz不仅可以生成恶意输入来利用XSS,还可以检测出它暴露漏洞的程度。在攻击语法的指导下,利用遗传算法实现恶意输入的生成和进化。双重污染推理,直到浏览器解析树,允许精确地检测利用尝试是否成功。我们的评估显示没有误报和高XSS揭示能力:KameleonFuzz检测到其他黑箱扫描仪遗漏的几个漏洞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KameleonFuzz: evolutionary fuzzing for black-box XSS detection
Fuzz testing consists in automatically generating and sending malicious inputs to an application in order to hopefully trigger a vulnerability. Fuzzing entails such questions as: Where to fuzz? Which parameter to fuzz? Where to observe its effects? In this paper, we specifically address the questions: How to fuzz a parameter? How to observe its effects? To address these questions, we propose KameleonFuzz, a black-box Cross Site Scripting (XSS) fuzzer for web applications. KameleonFuzz can not only generate malicious inputs to exploit XSS, but also detect how close it is revealing a vulnerability. The malicious inputs generation and evolution is achieved with a genetic algorithm, guided by an attack grammar. A double taint inference, up to the browser parse tree, permits to detect precisely whether an exploitation attempt succeeded. Our evaluation demonstrates no false positives and high XSS revealing capabilities: KameleonFuzz detects several vulnerabilities missed by other black-box scanners.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信