优化Apriori算法描述及其在车辆故障现象关联分析中的应用

Hao Kang, Hailong Zhao
{"title":"优化Apriori算法描述及其在车辆故障现象关联分析中的应用","authors":"Hao Kang, Hailong Zhao","doi":"10.12783/DTCSE/CCNT2020/35394","DOIUrl":null,"url":null,"abstract":"This paper proposes an optimized Apriori data correlation analysis algorithm and describes it, and evaluates the results of the model in the correlation analysis of vehicle fault phenomena. The algorithm reduces the load of I/O interface and improves the computational efficiency by optimizing the number of frequent itemset and pruning In the data mining process. The algorithm is applied to the correlation analysis of common faults in vehicle engine system. The optimized traversal method enables it to quickly find frequent patterns, correlations and causal structures among fault data sets, and detect potential correlations among faults, which achieves better application effect.","PeriodicalId":11066,"journal":{"name":"DEStech Transactions on Computer Science and Engineering","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Apriori Algorithm Description and Application in Vehicle Fault Phenomenon Correlation Analysis\",\"authors\":\"Hao Kang, Hailong Zhao\",\"doi\":\"10.12783/DTCSE/CCNT2020/35394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an optimized Apriori data correlation analysis algorithm and describes it, and evaluates the results of the model in the correlation analysis of vehicle fault phenomena. The algorithm reduces the load of I/O interface and improves the computational efficiency by optimizing the number of frequent itemset and pruning In the data mining process. The algorithm is applied to the correlation analysis of common faults in vehicle engine system. The optimized traversal method enables it to quickly find frequent patterns, correlations and causal structures among fault data sets, and detect potential correlations among faults, which achieves better application effect.\",\"PeriodicalId\":11066,\"journal\":{\"name\":\"DEStech Transactions on Computer Science and Engineering\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DEStech Transactions on Computer Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12783/DTCSE/CCNT2020/35394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DEStech Transactions on Computer Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/DTCSE/CCNT2020/35394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种优化的Apriori数据关联分析算法并对其进行了描述,并对该模型在车辆故障现象关联分析中的结果进行了评价。该算法通过优化数据挖掘过程中频繁项集的个数和剪枝,降低了I/O接口的负载,提高了计算效率。将该算法应用于汽车发动机系统常见故障的关联分析。优化后的遍历方法能够快速发现故障数据集之间的频繁模式、相关性和因果结构,并检测故障之间的潜在相关性,取得了较好的应用效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized Apriori Algorithm Description and Application in Vehicle Fault Phenomenon Correlation Analysis
This paper proposes an optimized Apriori data correlation analysis algorithm and describes it, and evaluates the results of the model in the correlation analysis of vehicle fault phenomena. The algorithm reduces the load of I/O interface and improves the computational efficiency by optimizing the number of frequent itemset and pruning In the data mining process. The algorithm is applied to the correlation analysis of common faults in vehicle engine system. The optimized traversal method enables it to quickly find frequent patterns, correlations and causal structures among fault data sets, and detect potential correlations among faults, which achieves better application effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信