化学沉淀法合成纳米锡酸锌的湿度传感研究

B. Yadav, Rama Singh, Satyendra Singh, P. Dwivedi
{"title":"化学沉淀法合成纳米锡酸锌的湿度传感研究","authors":"B. Yadav, Rama Singh, Satyendra Singh, P. Dwivedi","doi":"10.1080/19430892.2012.654742","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, nanoparticles of zinc stannate in different compositions were synthesized via chemical precipitation method. The as-synthesized material was characterized using differential scanning calorimetry. For the formation of crystalline zinc stannate, the synthesized material was annealed at 600°C. Surface morphologies of the samples were analyzed using scanning electron microscopy. The XRD pattern indicates the formation of nanocrystalline zinc stannate and it has a perovskite phase with an orthorhombic structure having a minimum crystallite size 4 nm. Pellets of the sensing materials were made by hydraulic press machine under a pressure of 616 MPa. Furthermore, the humidity sensing investigations of these sensing pellets were completed. Our results illustrate that zinc stannate in 1:4 weight ratio was most sensitive to humidity in comparison to other compositions under same conditions. Maximum sensitivity of the sensor was 3 GΩ/%RH. The results were reproducible up to 72% after 2 mon of ...","PeriodicalId":13985,"journal":{"name":"International Journal of Green Nanotechnology","volume":"74 1","pages":"37-45"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Humidity Sensing Investigations on Nanostructured Zinc Stannate Synthesized via Chemical Precipitation Method\",\"authors\":\"B. Yadav, Rama Singh, Satyendra Singh, P. Dwivedi\",\"doi\":\"10.1080/19430892.2012.654742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this paper, nanoparticles of zinc stannate in different compositions were synthesized via chemical precipitation method. The as-synthesized material was characterized using differential scanning calorimetry. For the formation of crystalline zinc stannate, the synthesized material was annealed at 600°C. Surface morphologies of the samples were analyzed using scanning electron microscopy. The XRD pattern indicates the formation of nanocrystalline zinc stannate and it has a perovskite phase with an orthorhombic structure having a minimum crystallite size 4 nm. Pellets of the sensing materials were made by hydraulic press machine under a pressure of 616 MPa. Furthermore, the humidity sensing investigations of these sensing pellets were completed. Our results illustrate that zinc stannate in 1:4 weight ratio was most sensitive to humidity in comparison to other compositions under same conditions. Maximum sensitivity of the sensor was 3 GΩ/%RH. The results were reproducible up to 72% after 2 mon of ...\",\"PeriodicalId\":13985,\"journal\":{\"name\":\"International Journal of Green Nanotechnology\",\"volume\":\"74 1\",\"pages\":\"37-45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Green Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19430892.2012.654742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Green Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19430892.2012.654742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

摘要:本文采用化学沉淀法合成了不同组成的锡酸锌纳米颗粒。用差示扫描量热法对合成材料进行了表征。为了得到结晶锡酸锌,将合成的材料在600℃下退火。用扫描电子显微镜分析了样品的表面形貌。XRD谱图表明,锡酸锌形成了纳米晶,具有正交结构的钙钛矿相,最小晶粒尺寸为4 nm。在616 MPa的压力下,采用液压机对传感材料进行制粒。此外,还完成了这些传感球团的湿度传感研究。结果表明,在同等条件下,锡酸锌在重量比为1:4时对湿度最敏感。传感器的最大灵敏度为3 GΩ/%RH。2个月后,结果的重现率高达72%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Humidity Sensing Investigations on Nanostructured Zinc Stannate Synthesized via Chemical Precipitation Method
ABSTRACT In this paper, nanoparticles of zinc stannate in different compositions were synthesized via chemical precipitation method. The as-synthesized material was characterized using differential scanning calorimetry. For the formation of crystalline zinc stannate, the synthesized material was annealed at 600°C. Surface morphologies of the samples were analyzed using scanning electron microscopy. The XRD pattern indicates the formation of nanocrystalline zinc stannate and it has a perovskite phase with an orthorhombic structure having a minimum crystallite size 4 nm. Pellets of the sensing materials were made by hydraulic press machine under a pressure of 616 MPa. Furthermore, the humidity sensing investigations of these sensing pellets were completed. Our results illustrate that zinc stannate in 1:4 weight ratio was most sensitive to humidity in comparison to other compositions under same conditions. Maximum sensitivity of the sensor was 3 GΩ/%RH. The results were reproducible up to 72% after 2 mon of ...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信