用非紧性测度处理实半线上二次泛函积分方程的耦合系统

A. El-Sayed, Y. Omar, H. Hashem, S. Al-Issa
{"title":"用非紧性测度处理实半线上二次泛函积分方程的耦合系统","authors":"A. El-Sayed, Y. Omar, H. Hashem, S. Al-Issa","doi":"10.3390/foundations3010004","DOIUrl":null,"url":null,"abstract":"This article is devoted to the solvability and the asymptotic stability of a coupled system of a functional integral equation on the real half-axis. Our consideration is located in the space of bounded continuous functions on R+(BC(R+)). The main tool applied in this work is the technique associated with measures of noncompactness in BC(R+) by a given modulus of continuity. Next, we formulate and prove a sufficient condition for the solvability of that coupled system. We, additionally, provide an example and some particular cases to demonstrate the effectiveness and value of our results.","PeriodicalId":81291,"journal":{"name":"Foundations","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Treatment of a Coupled System for Quadratic Functional Integral Equation on the Real Half-Line via Measure of Noncompactness\",\"authors\":\"A. El-Sayed, Y. Omar, H. Hashem, S. Al-Issa\",\"doi\":\"10.3390/foundations3010004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is devoted to the solvability and the asymptotic stability of a coupled system of a functional integral equation on the real half-axis. Our consideration is located in the space of bounded continuous functions on R+(BC(R+)). The main tool applied in this work is the technique associated with measures of noncompactness in BC(R+) by a given modulus of continuity. Next, we formulate and prove a sufficient condition for the solvability of that coupled system. We, additionally, provide an example and some particular cases to demonstrate the effectiveness and value of our results.\",\"PeriodicalId\":81291,\"journal\":{\"name\":\"Foundations\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/foundations3010004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foundations3010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了实半轴上一类泛函积分方程耦合系统的可解性和渐近稳定性。我们考虑的是R+(BC(R+))上有界连续函数的空间。在这项工作中应用的主要工具是与BC(R+)中的非紧性测度相关的技术,该测度是通过给定的连续性模量来实现的。其次,给出并证明了该耦合系统可解的一个充分条件。此外,我们还提供了一个例子和一些特定的案例来证明我们的结果的有效性和价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Treatment of a Coupled System for Quadratic Functional Integral Equation on the Real Half-Line via Measure of Noncompactness
This article is devoted to the solvability and the asymptotic stability of a coupled system of a functional integral equation on the real half-axis. Our consideration is located in the space of bounded continuous functions on R+(BC(R+)). The main tool applied in this work is the technique associated with measures of noncompactness in BC(R+) by a given modulus of continuity. Next, we formulate and prove a sufficient condition for the solvability of that coupled system. We, additionally, provide an example and some particular cases to demonstrate the effectiveness and value of our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信