leakprobe:一个分析敏感数据泄露路径的框架

Junfeng Yu, Shengzhi Zhang, Peng Liu, Zhitang Li
{"title":"leakprobe:一个分析敏感数据泄露路径的框架","authors":"Junfeng Yu, Shengzhi Zhang, Peng Liu, Zhitang Li","doi":"10.1145/1943513.1943525","DOIUrl":null,"url":null,"abstract":"In this paper, we present the design, implementation, and evaluation of LeakProber, a framework that leverages the whole system dynamic instrumentation and the inter-procedural analysis to enable data propagation path profiling in production system. We integrate both the static analysis and runtime tracking to establish a holistic and practical approach to generating the sensitive data propagation graph (sDPG) with minimum runtime overhead. We evaluate our system on several data stealing attacks scenario for generating sDPG. The sDPG generated by our system captures multiple aspects of data accessing patterns and provides clear insights into the data leakage path. We also measure the performance of our system and find that it degrades the production system about 6% in the trace-on mode. When our prototype works in the trace-off mode, the runtime overhead is even lower, on an average of 1.5% across each benchmark we run. We believe that it is feasible to directly apply our prototype into production system environment.","PeriodicalId":90472,"journal":{"name":"CODASPY : proceedings of the ... ACM conference on data and application security and privacy. ACM Conference on Data and Application Security & Privacy","volume":"85 1","pages":"75-84"},"PeriodicalIF":0.0000,"publicationDate":"2011-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"LeakProber: a framework for profiling sensitive data leakage paths\",\"authors\":\"Junfeng Yu, Shengzhi Zhang, Peng Liu, Zhitang Li\",\"doi\":\"10.1145/1943513.1943525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present the design, implementation, and evaluation of LeakProber, a framework that leverages the whole system dynamic instrumentation and the inter-procedural analysis to enable data propagation path profiling in production system. We integrate both the static analysis and runtime tracking to establish a holistic and practical approach to generating the sensitive data propagation graph (sDPG) with minimum runtime overhead. We evaluate our system on several data stealing attacks scenario for generating sDPG. The sDPG generated by our system captures multiple aspects of data accessing patterns and provides clear insights into the data leakage path. We also measure the performance of our system and find that it degrades the production system about 6% in the trace-on mode. When our prototype works in the trace-off mode, the runtime overhead is even lower, on an average of 1.5% across each benchmark we run. We believe that it is feasible to directly apply our prototype into production system environment.\",\"PeriodicalId\":90472,\"journal\":{\"name\":\"CODASPY : proceedings of the ... ACM conference on data and application security and privacy. ACM Conference on Data and Application Security & Privacy\",\"volume\":\"85 1\",\"pages\":\"75-84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CODASPY : proceedings of the ... ACM conference on data and application security and privacy. ACM Conference on Data and Application Security & Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1943513.1943525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CODASPY : proceedings of the ... ACM conference on data and application security and privacy. ACM Conference on Data and Application Security & Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1943513.1943525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在本文中,我们介绍了LeakProber的设计、实现和评估,这是一个利用整个系统动态仪表和过程间分析来实现生产系统中数据传播路径分析的框架。我们将静态分析和运行时跟踪相结合,建立了一种以最小运行时开销生成敏感数据传播图(sDPG)的整体实用方法。我们针对生成sDPG的几种数据窃取攻击场景对系统进行了评估。我们的系统生成的sDPG捕获了数据访问模式的多个方面,并提供了对数据泄漏路径的清晰见解。我们还测量了系统的性能,发现在跟踪模式下,它使生产系统降低了约6%。当我们的原型在跟踪模式下工作时,运行时开销甚至更低,在我们运行的每个基准测试中平均为1.5%。我们相信将我们的原型直接应用到生产系统环境中是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LeakProber: a framework for profiling sensitive data leakage paths
In this paper, we present the design, implementation, and evaluation of LeakProber, a framework that leverages the whole system dynamic instrumentation and the inter-procedural analysis to enable data propagation path profiling in production system. We integrate both the static analysis and runtime tracking to establish a holistic and practical approach to generating the sensitive data propagation graph (sDPG) with minimum runtime overhead. We evaluate our system on several data stealing attacks scenario for generating sDPG. The sDPG generated by our system captures multiple aspects of data accessing patterns and provides clear insights into the data leakage path. We also measure the performance of our system and find that it degrades the production system about 6% in the trace-on mode. When our prototype works in the trace-off mode, the runtime overhead is even lower, on an average of 1.5% across each benchmark we run. We believe that it is feasible to directly apply our prototype into production system environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信