基于Shannon容量的MIMO信道发射天线的近最优选择

S. Sandhu, R. Nabar, D. Gore, A. Paulraj
{"title":"基于Shannon容量的MIMO信道发射天线的近最优选择","authors":"S. Sandhu, R. Nabar, D. Gore, A. Paulraj","doi":"10.1109/ACSSC.2000.911019","DOIUrl":null,"url":null,"abstract":"Current wireless MIMO (multiple transmit and receive antenna) systems are designed with the assumption that the fading channel is estimated perfectly at the receiver while the transmitter has no channel knowledge. If even a small amount of information is fed back to the transmitter, the capacity of the resulting channel increases appreciably. We consider a low-scattering, quasistatic environment where the matrix channel is rank deficient. Previous results (Gore et al. 2000, and Nabar et al. 2000) for such a channel indicate that channel capacity can be increased by a judicious choice of fewer transmit antennas. The optimal subset of transmit antennas is computed by the receiver as the subset that induces the highest Shannon capacity of all subsets of the same cardinality. Here we describe a computationally efficient, near-optimal search technique for the optimal subset based on classical waterpouring. We also provide enhanced search techniques based on partial waterpouring and uniform pourer allocation over the strongest channel modes that outperform waterpouring at high signal to noise ratios.","PeriodicalId":10581,"journal":{"name":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","volume":"67 1","pages":"567-571 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"105","resultStr":"{\"title\":\"Near-optimal selection of transmit antennas for a MIMO channel based on Shannon capacity\",\"authors\":\"S. Sandhu, R. Nabar, D. Gore, A. Paulraj\",\"doi\":\"10.1109/ACSSC.2000.911019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current wireless MIMO (multiple transmit and receive antenna) systems are designed with the assumption that the fading channel is estimated perfectly at the receiver while the transmitter has no channel knowledge. If even a small amount of information is fed back to the transmitter, the capacity of the resulting channel increases appreciably. We consider a low-scattering, quasistatic environment where the matrix channel is rank deficient. Previous results (Gore et al. 2000, and Nabar et al. 2000) for such a channel indicate that channel capacity can be increased by a judicious choice of fewer transmit antennas. The optimal subset of transmit antennas is computed by the receiver as the subset that induces the highest Shannon capacity of all subsets of the same cardinality. Here we describe a computationally efficient, near-optimal search technique for the optimal subset based on classical waterpouring. We also provide enhanced search techniques based on partial waterpouring and uniform pourer allocation over the strongest channel modes that outperform waterpouring at high signal to noise ratios.\",\"PeriodicalId\":10581,\"journal\":{\"name\":\"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)\",\"volume\":\"67 1\",\"pages\":\"567-571 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"105\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2000.911019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2000.911019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 105

摘要

当前的无线MIMO(多收发天线)系统都是在接收端完全估计衰落信道而发送端没有信道知识的前提下设计的。即使只有少量的信息反馈给发射机,所产生的信道的容量也会显著增加。我们考虑一个低散射的准静态环境,其中矩阵通道是秩不足的。先前关于这种信道的结果(Gore et al. 2000和Nabar et al. 2000)表明,明智地选择较少的发射天线可以增加信道容量。发射天线的最优子集由接收端计算为相同基数的所有子集中香农容量最大的子集。在这里,我们描述了一种基于经典浇灌的计算效率高、接近最优的最优子集搜索技术。我们还提供了基于部分注水和均匀功率分配的增强搜索技术,这些技术在高信噪比的最强信道模式下优于注水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near-optimal selection of transmit antennas for a MIMO channel based on Shannon capacity
Current wireless MIMO (multiple transmit and receive antenna) systems are designed with the assumption that the fading channel is estimated perfectly at the receiver while the transmitter has no channel knowledge. If even a small amount of information is fed back to the transmitter, the capacity of the resulting channel increases appreciably. We consider a low-scattering, quasistatic environment where the matrix channel is rank deficient. Previous results (Gore et al. 2000, and Nabar et al. 2000) for such a channel indicate that channel capacity can be increased by a judicious choice of fewer transmit antennas. The optimal subset of transmit antennas is computed by the receiver as the subset that induces the highest Shannon capacity of all subsets of the same cardinality. Here we describe a computationally efficient, near-optimal search technique for the optimal subset based on classical waterpouring. We also provide enhanced search techniques based on partial waterpouring and uniform pourer allocation over the strongest channel modes that outperform waterpouring at high signal to noise ratios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信