加权一般分布族:理论与实践

IF 0.9 Q3 MATHEMATICS, APPLIED
Hassan Bakouch, Christophe Chesneau, Mai Enany
{"title":"加权一般分布族:理论与实践","authors":"Hassan Bakouch,&nbsp;Christophe Chesneau,&nbsp;Mai Enany","doi":"10.1002/cmm4.1135","DOIUrl":null,"url":null,"abstract":"<p>In this article, we introduce a new general family of distributions. The submodels of the general family accommodate various shapes of pdf and hazard rate, involving decreasing, increasing, bathtub and J-shapes. Hence, it can provide analysis for many practical datasets. Mathematical expressions for the family are obtained, including moments, moment generating and quantile functions, stochastic ordering, and entropy. Some submodels of the family are inserted based on the baseline distributions: Exponential, Gompertz, Lindley, and weight exponential distributions. Estimation of the model parameters is justified by the method of maximum likelihood. Capability of the family is shown by fitting three practical datasets to the mentioned submodels.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmm4.1135","citationCount":"7","resultStr":"{\"title\":\"A weighted general family of distributions: Theory and practice\",\"authors\":\"Hassan Bakouch,&nbsp;Christophe Chesneau,&nbsp;Mai Enany\",\"doi\":\"10.1002/cmm4.1135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we introduce a new general family of distributions. The submodels of the general family accommodate various shapes of pdf and hazard rate, involving decreasing, increasing, bathtub and J-shapes. Hence, it can provide analysis for many practical datasets. Mathematical expressions for the family are obtained, including moments, moment generating and quantile functions, stochastic ordering, and entropy. Some submodels of the family are inserted based on the baseline distributions: Exponential, Gompertz, Lindley, and weight exponential distributions. Estimation of the model parameters is justified by the method of maximum likelihood. Capability of the family is shown by fitting three practical datasets to the mentioned submodels.</p>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cmm4.1135\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们将介绍一个新的通用分布族。一般科的子模型可容纳不同形状的pdf和危险率,包括递减型、递增型、浴盆型和j型。因此,它可以为许多实际数据集提供分析。得到了该族的数学表达式,包括矩、矩生成和分位数函数、随机排序和熵。该家族的一些子模型是基于基线分布插入的:指数、Gompertz、Lindley和权重指数分布。用极大似然法对模型参数的估计进行了验证。通过将三个实际数据集拟合到上述子模型中,证明了该族的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A weighted general family of distributions: Theory and practice

In this article, we introduce a new general family of distributions. The submodels of the general family accommodate various shapes of pdf and hazard rate, involving decreasing, increasing, bathtub and J-shapes. Hence, it can provide analysis for many practical datasets. Mathematical expressions for the family are obtained, including moments, moment generating and quantile functions, stochastic ordering, and entropy. Some submodels of the family are inserted based on the baseline distributions: Exponential, Gompertz, Lindley, and weight exponential distributions. Estimation of the model parameters is justified by the method of maximum likelihood. Capability of the family is shown by fitting three practical datasets to the mentioned submodels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信