非线性方程的改进高阶组合

G. Deep, I. Argyros
{"title":"非线性方程的改进高阶组合","authors":"G. Deep, I. Argyros","doi":"10.3390/foundations3010003","DOIUrl":null,"url":null,"abstract":"In the present study, two new compositions of convergence order six are presented for solving nonlinear equations. The first method is obtained from the third-order one given by Homeier using linear interpolation, and the second one is obtained from the third-order method given by Traub using divided differences. The first method requires three evaluations of the function and one evaluation of the first derivative, thereby enhancing the efficiency index. In the second method, the computation of a derivative is reduced by approximating it using divided differences. Various numerical experiments are performed which demonstrate the accuracy and efficacy of the proposed methods.","PeriodicalId":81291,"journal":{"name":"Foundations","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved Higher Order Compositions for Nonlinear Equations\",\"authors\":\"G. Deep, I. Argyros\",\"doi\":\"10.3390/foundations3010003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, two new compositions of convergence order six are presented for solving nonlinear equations. The first method is obtained from the third-order one given by Homeier using linear interpolation, and the second one is obtained from the third-order method given by Traub using divided differences. The first method requires three evaluations of the function and one evaluation of the first derivative, thereby enhancing the efficiency index. In the second method, the computation of a derivative is reduced by approximating it using divided differences. Various numerical experiments are performed which demonstrate the accuracy and efficacy of the proposed methods.\",\"PeriodicalId\":81291,\"journal\":{\"name\":\"Foundations\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/foundations3010003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foundations3010003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了求解非线性方程的两种新的六阶收敛组合。第一种方法是由Homeier的三阶方法用线性插值得到的,第二种方法是由Traub的三阶方法用除差法得到的。第一种方法需要对函数进行三次评价,对一阶导数进行一次评价,从而提高了效率指标。在第二种方法中,导数的计算是通过使用除差近似来减少的。各种数值实验证明了所提方法的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Higher Order Compositions for Nonlinear Equations
In the present study, two new compositions of convergence order six are presented for solving nonlinear equations. The first method is obtained from the third-order one given by Homeier using linear interpolation, and the second one is obtained from the third-order method given by Traub using divided differences. The first method requires three evaluations of the function and one evaluation of the first derivative, thereby enhancing the efficiency index. In the second method, the computation of a derivative is reduced by approximating it using divided differences. Various numerical experiments are performed which demonstrate the accuracy and efficacy of the proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信