{"title":"用两个实例说明了最优控制中异常测地线的可达性","authors":"B. Bonnard, J. Rouot, B. Wembe","doi":"10.3934/mcrf.2022052","DOIUrl":null,"url":null,"abstract":"In this article, we use two case studies from geometry and optimal control of chemical network to analyze the relation between abnormal geodesics in time optimal control, accessibility properties and regularity of the time minimal value function. Introduction. In this article, one considers the time minimal control problem for a smooth system of the form dq dt = f(q, u), where q ∈ M is an open subset of R n and the set of admissible control is the set U of bounded measurable mapping u(·) valued in a control domain U , where U is a two-dimensional manifold of R with boundary. According to the Maximum Principle [14], time minimal solutions are extremal curves satisfying the constrained Hamiltonian equation q̇ = ∂H ∂p , ṗ = − ∂q , H(q, p, u) = M(q, p), (1) where H(q, p, u) = p ·F (q, u) is the pseudo (or non maximized) Hamiltonian, while M(q, p) = maxv∈U H(q, p, u) is the true (maximized) Hamiltonian. A projection of an extremal curve z = (q, p) on the q-space is called a geodesic. Moreover since M is constant along an extremal curve and linear with respect to p, the extremal can be either exceptional (abnormal) if M = 0 or non exceptional if M 6= 0. To refine this classification, an extremal subarc can be either regular if the control belongs to the boundary of U or singular if it belongs to the interior and satisfies the condition ∂H ∂u = 0. Taking q(0) = q0 the accessibility set A(q0, tf ) in time tf is the set ∪u(·)∈U q(tf , x0, u), where t 7→ q(·, q0, u) denotes the solution of the system, with q(0) = q0 and clearly since the time minimal trajectories belongs to the boundary of the accessibility set, the Maximum Principle is a parameterization of this boundary. 2020 Mathematics Subject Classification. Primary: 49K15, 49L99, 53C60, 58K50.","PeriodicalId":48889,"journal":{"name":"Mathematical Control and Related Fields","volume":"4 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Accessibility properties of abnormal geodesics in optimal control illustrated by two case studies\",\"authors\":\"B. Bonnard, J. Rouot, B. Wembe\",\"doi\":\"10.3934/mcrf.2022052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we use two case studies from geometry and optimal control of chemical network to analyze the relation between abnormal geodesics in time optimal control, accessibility properties and regularity of the time minimal value function. Introduction. In this article, one considers the time minimal control problem for a smooth system of the form dq dt = f(q, u), where q ∈ M is an open subset of R n and the set of admissible control is the set U of bounded measurable mapping u(·) valued in a control domain U , where U is a two-dimensional manifold of R with boundary. According to the Maximum Principle [14], time minimal solutions are extremal curves satisfying the constrained Hamiltonian equation q̇ = ∂H ∂p , ṗ = − ∂q , H(q, p, u) = M(q, p), (1) where H(q, p, u) = p ·F (q, u) is the pseudo (or non maximized) Hamiltonian, while M(q, p) = maxv∈U H(q, p, u) is the true (maximized) Hamiltonian. A projection of an extremal curve z = (q, p) on the q-space is called a geodesic. Moreover since M is constant along an extremal curve and linear with respect to p, the extremal can be either exceptional (abnormal) if M = 0 or non exceptional if M 6= 0. To refine this classification, an extremal subarc can be either regular if the control belongs to the boundary of U or singular if it belongs to the interior and satisfies the condition ∂H ∂u = 0. Taking q(0) = q0 the accessibility set A(q0, tf ) in time tf is the set ∪u(·)∈U q(tf , x0, u), where t 7→ q(·, q0, u) denotes the solution of the system, with q(0) = q0 and clearly since the time minimal trajectories belongs to the boundary of the accessibility set, the Maximum Principle is a parameterization of this boundary. 2020 Mathematics Subject Classification. Primary: 49K15, 49L99, 53C60, 58K50.\",\"PeriodicalId\":48889,\"journal\":{\"name\":\"Mathematical Control and Related Fields\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Control and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/mcrf.2022052\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Control and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/mcrf.2022052","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Accessibility properties of abnormal geodesics in optimal control illustrated by two case studies
In this article, we use two case studies from geometry and optimal control of chemical network to analyze the relation between abnormal geodesics in time optimal control, accessibility properties and regularity of the time minimal value function. Introduction. In this article, one considers the time minimal control problem for a smooth system of the form dq dt = f(q, u), where q ∈ M is an open subset of R n and the set of admissible control is the set U of bounded measurable mapping u(·) valued in a control domain U , where U is a two-dimensional manifold of R with boundary. According to the Maximum Principle [14], time minimal solutions are extremal curves satisfying the constrained Hamiltonian equation q̇ = ∂H ∂p , ṗ = − ∂q , H(q, p, u) = M(q, p), (1) where H(q, p, u) = p ·F (q, u) is the pseudo (or non maximized) Hamiltonian, while M(q, p) = maxv∈U H(q, p, u) is the true (maximized) Hamiltonian. A projection of an extremal curve z = (q, p) on the q-space is called a geodesic. Moreover since M is constant along an extremal curve and linear with respect to p, the extremal can be either exceptional (abnormal) if M = 0 or non exceptional if M 6= 0. To refine this classification, an extremal subarc can be either regular if the control belongs to the boundary of U or singular if it belongs to the interior and satisfies the condition ∂H ∂u = 0. Taking q(0) = q0 the accessibility set A(q0, tf ) in time tf is the set ∪u(·)∈U q(tf , x0, u), where t 7→ q(·, q0, u) denotes the solution of the system, with q(0) = q0 and clearly since the time minimal trajectories belongs to the boundary of the accessibility set, the Maximum Principle is a parameterization of this boundary. 2020 Mathematics Subject Classification. Primary: 49K15, 49L99, 53C60, 58K50.
期刊介绍:
MCRF aims to publish original research as well as expository papers on mathematical control theory and related fields. The goal is to provide a complete and reliable source of mathematical methods and results in this field. The journal will also accept papers from some related fields such as differential equations, functional analysis, probability theory and stochastic analysis, inverse problems, optimization, numerical computation, mathematical finance, information theory, game theory, system theory, etc., provided that they have some intrinsic connections with control theory.