{"title":"johnson - wilson谱的拓扑Hochschild同调","authors":"Christian Ausoni, Birgit Richter","doi":"10.2140/agt.2020.20.375","DOIUrl":null,"url":null,"abstract":"We offer a complete description of $THH(E(2))$ under the assumption that the Johnson-Wilson spectrum $E(2)$ at a chosen odd prime carries an $E_\\infty$-structure. We also place $THH(E(2))$ in a cofiber sequence $E(2) \\rightarrow THH(E(2))\\rightarrow \\overline{THH}(E(2))$ and describe $\\overline{THH}(E(2))$ under the assumption that $E(2)$ is an $E_3$-ring spectrum. We state general results about the $K(i)$-local behaviour of $THH(E(n))$ for all $n$ and $0 \\leq i \\leq n$. In particular, we compute $K(i)_*THH(E(n))$.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Towards topological Hochschild homology of\\nJohnson–Wilson spectra\",\"authors\":\"Christian Ausoni, Birgit Richter\",\"doi\":\"10.2140/agt.2020.20.375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We offer a complete description of $THH(E(2))$ under the assumption that the Johnson-Wilson spectrum $E(2)$ at a chosen odd prime carries an $E_\\\\infty$-structure. We also place $THH(E(2))$ in a cofiber sequence $E(2) \\\\rightarrow THH(E(2))\\\\rightarrow \\\\overline{THH}(E(2))$ and describe $\\\\overline{THH}(E(2))$ under the assumption that $E(2)$ is an $E_3$-ring spectrum. We state general results about the $K(i)$-local behaviour of $THH(E(n))$ for all $n$ and $0 \\\\leq i \\\\leq n$. In particular, we compute $K(i)_*THH(E(n))$.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2020.20.375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2020.20.375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
摘要
我们提供了一个完整的描述$THH(E(2))$的假设下,约翰逊-威尔逊光谱$E(2)$在一个选定的奇素数携带$E_\infty$ -结构。我们还将$THH(E(2))$放在共纤维序列$E(2) \rightarrow THH(E(2))\rightarrow \overline{THH}(E(2))$中,并假设$E(2)$是一个$E_3$环谱来描述$\overline{THH}(E(2))$。我们陈述了关于所有$n$和$0 \leq i \leq n$的$THH(E(n))$的$K(i)$ -局部行为的一般结果。特别地,我们计算$K(i)_*THH(E(n))$。
Towards topological Hochschild homology of
Johnson–Wilson spectra
We offer a complete description of $THH(E(2))$ under the assumption that the Johnson-Wilson spectrum $E(2)$ at a chosen odd prime carries an $E_\infty$-structure. We also place $THH(E(2))$ in a cofiber sequence $E(2) \rightarrow THH(E(2))\rightarrow \overline{THH}(E(2))$ and describe $\overline{THH}(E(2))$ under the assumption that $E(2)$ is an $E_3$-ring spectrum. We state general results about the $K(i)$-local behaviour of $THH(E(n))$ for all $n$ and $0 \leq i \leq n$. In particular, we compute $K(i)_*THH(E(n))$.