johnson - wilson谱的拓扑Hochschild同调

Christian Ausoni, Birgit Richter
{"title":"johnson - wilson谱的拓扑Hochschild同调","authors":"Christian Ausoni, Birgit Richter","doi":"10.2140/agt.2020.20.375","DOIUrl":null,"url":null,"abstract":"We offer a complete description of $THH(E(2))$ under the assumption that the Johnson-Wilson spectrum $E(2)$ at a chosen odd prime carries an $E_\\infty$-structure. We also place $THH(E(2))$ in a cofiber sequence $E(2) \\rightarrow THH(E(2))\\rightarrow \\overline{THH}(E(2))$ and describe $\\overline{THH}(E(2))$ under the assumption that $E(2)$ is an $E_3$-ring spectrum. We state general results about the $K(i)$-local behaviour of $THH(E(n))$ for all $n$ and $0 \\leq i \\leq n$. In particular, we compute $K(i)_*THH(E(n))$.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Towards topological Hochschild homology of\\nJohnson–Wilson spectra\",\"authors\":\"Christian Ausoni, Birgit Richter\",\"doi\":\"10.2140/agt.2020.20.375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We offer a complete description of $THH(E(2))$ under the assumption that the Johnson-Wilson spectrum $E(2)$ at a chosen odd prime carries an $E_\\\\infty$-structure. We also place $THH(E(2))$ in a cofiber sequence $E(2) \\\\rightarrow THH(E(2))\\\\rightarrow \\\\overline{THH}(E(2))$ and describe $\\\\overline{THH}(E(2))$ under the assumption that $E(2)$ is an $E_3$-ring spectrum. We state general results about the $K(i)$-local behaviour of $THH(E(n))$ for all $n$ and $0 \\\\leq i \\\\leq n$. In particular, we compute $K(i)_*THH(E(n))$.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2020.20.375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2020.20.375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提供了一个完整的描述$THH(E(2))$的假设下,约翰逊-威尔逊光谱$E(2)$在一个选定的奇素数携带$E_\infty$ -结构。我们还将$THH(E(2))$放在共纤维序列$E(2) \rightarrow THH(E(2))\rightarrow \overline{THH}(E(2))$中,并假设$E(2)$是一个$E_3$环谱来描述$\overline{THH}(E(2))$。我们陈述了关于所有$n$和$0 \leq i \leq n$的$THH(E(n))$的$K(i)$ -局部行为的一般结果。特别地,我们计算$K(i)_*THH(E(n))$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards topological Hochschild homology of Johnson–Wilson spectra
We offer a complete description of $THH(E(2))$ under the assumption that the Johnson-Wilson spectrum $E(2)$ at a chosen odd prime carries an $E_\infty$-structure. We also place $THH(E(2))$ in a cofiber sequence $E(2) \rightarrow THH(E(2))\rightarrow \overline{THH}(E(2))$ and describe $\overline{THH}(E(2))$ under the assumption that $E(2)$ is an $E_3$-ring spectrum. We state general results about the $K(i)$-local behaviour of $THH(E(n))$ for all $n$ and $0 \leq i \leq n$. In particular, we compute $K(i)_*THH(E(n))$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信