智能电网环境下的预测负荷管理

Christopher Mutschler, Christoffer Loeffler, Nicolas Witt, Thorsten Edelhäußer, M. Philippsen
{"title":"智能电网环境下的预测负荷管理","authors":"Christopher Mutschler, Christoffer Loeffler, Nicolas Witt, Thorsten Edelhäußer, M. Philippsen","doi":"10.1145/2611286.2611330","DOIUrl":null,"url":null,"abstract":"The DEBS 2014 Grand Challenge targets the monitoring and prediction of energy loads of smart plugs installed in private households. This paper presents details of our middleware solution and efficient median calculation, shows how we address data quality issues, and provides insights into our enhanced prediction based on hidden Markov models.\n The evaluation on the smart grid data set shows that we process up to 244k input events per second with an average detection latency of only 13.3ms, and that our system efficiently scales across nodes to increase throughput. Our prediction model significantly outperforms the median-based prediction as it deviates much less from the real load values, and as it consumes considerably less memory.","PeriodicalId":92123,"journal":{"name":"Proceedings of the ... International Workshop on Distributed Event-Based Systems. International Workshop on Distributed Event-Based Systems","volume":"11 3","pages":"282-287"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Predictive load management in smart grid environments\",\"authors\":\"Christopher Mutschler, Christoffer Loeffler, Nicolas Witt, Thorsten Edelhäußer, M. Philippsen\",\"doi\":\"10.1145/2611286.2611330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The DEBS 2014 Grand Challenge targets the monitoring and prediction of energy loads of smart plugs installed in private households. This paper presents details of our middleware solution and efficient median calculation, shows how we address data quality issues, and provides insights into our enhanced prediction based on hidden Markov models.\\n The evaluation on the smart grid data set shows that we process up to 244k input events per second with an average detection latency of only 13.3ms, and that our system efficiently scales across nodes to increase throughput. Our prediction model significantly outperforms the median-based prediction as it deviates much less from the real load values, and as it consumes considerably less memory.\",\"PeriodicalId\":92123,\"journal\":{\"name\":\"Proceedings of the ... International Workshop on Distributed Event-Based Systems. International Workshop on Distributed Event-Based Systems\",\"volume\":\"11 3\",\"pages\":\"282-287\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... International Workshop on Distributed Event-Based Systems. International Workshop on Distributed Event-Based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2611286.2611330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Workshop on Distributed Event-Based Systems. International Workshop on Distributed Event-Based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2611286.2611330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

DEBS 2014大挑战的目标是监测和预测安装在私人家庭中的智能插头的能源负荷。本文介绍了我们的中间件解决方案和高效中位数计算的细节,展示了我们如何解决数据质量问题,并提供了基于隐马尔可夫模型的增强预测的见解。对智能电网数据集的评估表明,我们每秒处理多达244k个输入事件,平均检测延迟仅为13.3ms,并且我们的系统有效地跨节点扩展以提高吞吐量。我们的预测模型明显优于基于中位数的预测,因为它与实际负载值的偏差要小得多,并且消耗的内存也要少得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive load management in smart grid environments
The DEBS 2014 Grand Challenge targets the monitoring and prediction of energy loads of smart plugs installed in private households. This paper presents details of our middleware solution and efficient median calculation, shows how we address data quality issues, and provides insights into our enhanced prediction based on hidden Markov models. The evaluation on the smart grid data set shows that we process up to 244k input events per second with an average detection latency of only 13.3ms, and that our system efficiently scales across nodes to increase throughput. Our prediction model significantly outperforms the median-based prediction as it deviates much less from the real load values, and as it consumes considerably less memory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信