Christopher Mutschler, Christoffer Loeffler, Nicolas Witt, Thorsten Edelhäußer, M. Philippsen
{"title":"智能电网环境下的预测负荷管理","authors":"Christopher Mutschler, Christoffer Loeffler, Nicolas Witt, Thorsten Edelhäußer, M. Philippsen","doi":"10.1145/2611286.2611330","DOIUrl":null,"url":null,"abstract":"The DEBS 2014 Grand Challenge targets the monitoring and prediction of energy loads of smart plugs installed in private households. This paper presents details of our middleware solution and efficient median calculation, shows how we address data quality issues, and provides insights into our enhanced prediction based on hidden Markov models.\n The evaluation on the smart grid data set shows that we process up to 244k input events per second with an average detection latency of only 13.3ms, and that our system efficiently scales across nodes to increase throughput. Our prediction model significantly outperforms the median-based prediction as it deviates much less from the real load values, and as it consumes considerably less memory.","PeriodicalId":92123,"journal":{"name":"Proceedings of the ... International Workshop on Distributed Event-Based Systems. International Workshop on Distributed Event-Based Systems","volume":"11 3","pages":"282-287"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Predictive load management in smart grid environments\",\"authors\":\"Christopher Mutschler, Christoffer Loeffler, Nicolas Witt, Thorsten Edelhäußer, M. Philippsen\",\"doi\":\"10.1145/2611286.2611330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The DEBS 2014 Grand Challenge targets the monitoring and prediction of energy loads of smart plugs installed in private households. This paper presents details of our middleware solution and efficient median calculation, shows how we address data quality issues, and provides insights into our enhanced prediction based on hidden Markov models.\\n The evaluation on the smart grid data set shows that we process up to 244k input events per second with an average detection latency of only 13.3ms, and that our system efficiently scales across nodes to increase throughput. Our prediction model significantly outperforms the median-based prediction as it deviates much less from the real load values, and as it consumes considerably less memory.\",\"PeriodicalId\":92123,\"journal\":{\"name\":\"Proceedings of the ... International Workshop on Distributed Event-Based Systems. International Workshop on Distributed Event-Based Systems\",\"volume\":\"11 3\",\"pages\":\"282-287\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... International Workshop on Distributed Event-Based Systems. International Workshop on Distributed Event-Based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2611286.2611330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Workshop on Distributed Event-Based Systems. International Workshop on Distributed Event-Based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2611286.2611330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predictive load management in smart grid environments
The DEBS 2014 Grand Challenge targets the monitoring and prediction of energy loads of smart plugs installed in private households. This paper presents details of our middleware solution and efficient median calculation, shows how we address data quality issues, and provides insights into our enhanced prediction based on hidden Markov models.
The evaluation on the smart grid data set shows that we process up to 244k input events per second with an average detection latency of only 13.3ms, and that our system efficiently scales across nodes to increase throughput. Our prediction model significantly outperforms the median-based prediction as it deviates much less from the real load values, and as it consumes considerably less memory.