{"title":"核糖体DNA与青蛙的系统发育","authors":"D. Hillis, L. Ammerman, M. T. Dixon, R. Sá","doi":"10.2307/1466955","DOIUrl":null,"url":null,"abstract":"Phylogenetic analysis of 1656 aligned sites in the 28S ribosomal RNA gene of frogs supports some of the recently recognized higher groups of anurans but provides counter-support for others. The 28S rDNA data support the monophyly of the recently recognized Pipanura (me- sobatrachians plus neobatrachians), which in turn indicates paraphyly of archaeobatrachians. Me- sobatrachians (pelobatoids plus pipoids), which are either considered paraphyletic or weakly sup- ported as monophyletic in morphological analyses, also receive support as a monophyletic group from the 28S rDNA data. Hyloidea (= Bufonoidea), which is widely recognized but lacks mor- phological support, receives some molecular support as being monophyletic. However, Ranoidea, which is supported by morphology, is counter-supported by ribosomal DNA. In particular, den- drobatids do not group with ranids (but sometimes group with hyloids). A combined analysis of the molecular data with the morphological data of Duellman and Trueb (1986:Biology of Am- phibians) supports Pipanura, Mesobatrachia, Neobatrachia, and Hyloidea, but shows the ranoids as paraphyletic (with Dendrobatidae related to Hyloidea). The agreement between molecular and morphological data in several regions of the anuran tree indicates an approaching stabilization of traditionally labile higher frog classification.","PeriodicalId":56309,"journal":{"name":"Herpetological Monographs","volume":"7 1","pages":"118"},"PeriodicalIF":1.1000,"publicationDate":"1993-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2307/1466955","citationCount":"22","resultStr":"{\"title\":\"RIBOSOMAL DNA AND THE PHYLOGENY OF FROGS\",\"authors\":\"D. Hillis, L. Ammerman, M. T. Dixon, R. Sá\",\"doi\":\"10.2307/1466955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phylogenetic analysis of 1656 aligned sites in the 28S ribosomal RNA gene of frogs supports some of the recently recognized higher groups of anurans but provides counter-support for others. The 28S rDNA data support the monophyly of the recently recognized Pipanura (me- sobatrachians plus neobatrachians), which in turn indicates paraphyly of archaeobatrachians. Me- sobatrachians (pelobatoids plus pipoids), which are either considered paraphyletic or weakly sup- ported as monophyletic in morphological analyses, also receive support as a monophyletic group from the 28S rDNA data. Hyloidea (= Bufonoidea), which is widely recognized but lacks mor- phological support, receives some molecular support as being monophyletic. However, Ranoidea, which is supported by morphology, is counter-supported by ribosomal DNA. In particular, den- drobatids do not group with ranids (but sometimes group with hyloids). A combined analysis of the molecular data with the morphological data of Duellman and Trueb (1986:Biology of Am- phibians) supports Pipanura, Mesobatrachia, Neobatrachia, and Hyloidea, but shows the ranoids as paraphyletic (with Dendrobatidae related to Hyloidea). The agreement between molecular and morphological data in several regions of the anuran tree indicates an approaching stabilization of traditionally labile higher frog classification.\",\"PeriodicalId\":56309,\"journal\":{\"name\":\"Herpetological Monographs\",\"volume\":\"7 1\",\"pages\":\"118\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"1993-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2307/1466955\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Herpetological Monographs\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2307/1466955\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Herpetological Monographs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2307/1466955","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ZOOLOGY","Score":null,"Total":0}
Phylogenetic analysis of 1656 aligned sites in the 28S ribosomal RNA gene of frogs supports some of the recently recognized higher groups of anurans but provides counter-support for others. The 28S rDNA data support the monophyly of the recently recognized Pipanura (me- sobatrachians plus neobatrachians), which in turn indicates paraphyly of archaeobatrachians. Me- sobatrachians (pelobatoids plus pipoids), which are either considered paraphyletic or weakly sup- ported as monophyletic in morphological analyses, also receive support as a monophyletic group from the 28S rDNA data. Hyloidea (= Bufonoidea), which is widely recognized but lacks mor- phological support, receives some molecular support as being monophyletic. However, Ranoidea, which is supported by morphology, is counter-supported by ribosomal DNA. In particular, den- drobatids do not group with ranids (but sometimes group with hyloids). A combined analysis of the molecular data with the morphological data of Duellman and Trueb (1986:Biology of Am- phibians) supports Pipanura, Mesobatrachia, Neobatrachia, and Hyloidea, but shows the ranoids as paraphyletic (with Dendrobatidae related to Hyloidea). The agreement between molecular and morphological data in several regions of the anuran tree indicates an approaching stabilization of traditionally labile higher frog classification.
期刊介绍:
Since 1982, Herpetological Monographs has been dedicated to original research about the biology, diversity, systematics and evolution of amphibians and reptiles. Herpetological Monographs is published annually as a supplement to Herpetologica and contains long research papers, manuscripts and special symposia that synthesize the latest scientific discoveries.