代数λ的A+λA的大小

Q4 Mathematics
D. Krachun, F. Petrov
{"title":"代数λ的A+λA的大小","authors":"D. Krachun, F. Petrov","doi":"10.2140/moscow.2023.12.117","DOIUrl":null,"url":null,"abstract":"For a finite set $A\\subset \\mathbb{R}$ and real $\\lambda$, let $A+\\lambda A:=\\{a+\\lambda b :\\, a,b\\in A\\}$. Combining a structural theorem of Freiman on sets with small doubling constants together with a discrete analogue of Prekopa--Leindler inequality we prove a lower bound $|A+\\sqrt{2} A|\\geq (1+\\sqrt{2})^2|A|-O({|A|}^{1-\\varepsilon})$ which is essentially tight. We also formulate a conjecture about the value of $\\liminf |A+\\lambda A|/|A|$ for an arbitrary algebraic $\\lambda$. Finally, we prove a tight lower bound on the Lebesgue measure of $K+\\mathcal{T} K$ for a given linear operator $\\mathcal{T}\\in \\operatorname{End}(\\mathbb{R}^d)$ and a compact set $K\\subset \\mathbb{R}^d$ with fixed measure. This continuous result supports the conjecture and yields an upper bound in it.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the size of A+λA for algebraic λ\",\"authors\":\"D. Krachun, F. Petrov\",\"doi\":\"10.2140/moscow.2023.12.117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a finite set $A\\\\subset \\\\mathbb{R}$ and real $\\\\lambda$, let $A+\\\\lambda A:=\\\\{a+\\\\lambda b :\\\\, a,b\\\\in A\\\\}$. Combining a structural theorem of Freiman on sets with small doubling constants together with a discrete analogue of Prekopa--Leindler inequality we prove a lower bound $|A+\\\\sqrt{2} A|\\\\geq (1+\\\\sqrt{2})^2|A|-O({|A|}^{1-\\\\varepsilon})$ which is essentially tight. We also formulate a conjecture about the value of $\\\\liminf |A+\\\\lambda A|/|A|$ for an arbitrary algebraic $\\\\lambda$. Finally, we prove a tight lower bound on the Lebesgue measure of $K+\\\\mathcal{T} K$ for a given linear operator $\\\\mathcal{T}\\\\in \\\\operatorname{End}(\\\\mathbb{R}^d)$ and a compact set $K\\\\subset \\\\mathbb{R}^d$ with fixed measure. This continuous result supports the conjecture and yields an upper bound in it.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2023.12.117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2023.12.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

对于有限集$A\subset \mathbb{R}$和实数集$\lambda$,设$A+\lambda A:=\{a+\lambda b :\, a,b\in A\}$。结合小倍常数集合上的Freiman结构定理和Prekopa—Leindler不等式的离散模拟,证明了一个实质上是紧的下界$|A+\sqrt{2} A|\geq (1+\sqrt{2})^2|A|-O({|A|}^{1-\varepsilon})$。对于任意代数$\lambda$,我们也给出了关于$\liminf |A+\lambda A|/|A|$值的一个猜想。最后证明了给定线性算子$\mathcal{T}\in \operatorname{End}(\mathbb{R}^d)$和具有固定测度的紧集$K\subset \mathbb{R}^d$的Lebesgue测度$K+\mathcal{T} K$的紧下界。这个连续的结果支持这个猜想,并给出了它的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the size of A+λA for algebraic λ
For a finite set $A\subset \mathbb{R}$ and real $\lambda$, let $A+\lambda A:=\{a+\lambda b :\, a,b\in A\}$. Combining a structural theorem of Freiman on sets with small doubling constants together with a discrete analogue of Prekopa--Leindler inequality we prove a lower bound $|A+\sqrt{2} A|\geq (1+\sqrt{2})^2|A|-O({|A|}^{1-\varepsilon})$ which is essentially tight. We also formulate a conjecture about the value of $\liminf |A+\lambda A|/|A|$ for an arbitrary algebraic $\lambda$. Finally, we prove a tight lower bound on the Lebesgue measure of $K+\mathcal{T} K$ for a given linear operator $\mathcal{T}\in \operatorname{End}(\mathbb{R}^d)$ and a compact set $K\subset \mathbb{R}^d$ with fixed measure. This continuous result supports the conjecture and yields an upper bound in it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信