{"title":"代数λ的A+λA的大小","authors":"D. Krachun, F. Petrov","doi":"10.2140/moscow.2023.12.117","DOIUrl":null,"url":null,"abstract":"For a finite set $A\\subset \\mathbb{R}$ and real $\\lambda$, let $A+\\lambda A:=\\{a+\\lambda b :\\, a,b\\in A\\}$. Combining a structural theorem of Freiman on sets with small doubling constants together with a discrete analogue of Prekopa--Leindler inequality we prove a lower bound $|A+\\sqrt{2} A|\\geq (1+\\sqrt{2})^2|A|-O({|A|}^{1-\\varepsilon})$ which is essentially tight. We also formulate a conjecture about the value of $\\liminf |A+\\lambda A|/|A|$ for an arbitrary algebraic $\\lambda$. Finally, we prove a tight lower bound on the Lebesgue measure of $K+\\mathcal{T} K$ for a given linear operator $\\mathcal{T}\\in \\operatorname{End}(\\mathbb{R}^d)$ and a compact set $K\\subset \\mathbb{R}^d$ with fixed measure. This continuous result supports the conjecture and yields an upper bound in it.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the size of A+λA for algebraic λ\",\"authors\":\"D. Krachun, F. Petrov\",\"doi\":\"10.2140/moscow.2023.12.117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a finite set $A\\\\subset \\\\mathbb{R}$ and real $\\\\lambda$, let $A+\\\\lambda A:=\\\\{a+\\\\lambda b :\\\\, a,b\\\\in A\\\\}$. Combining a structural theorem of Freiman on sets with small doubling constants together with a discrete analogue of Prekopa--Leindler inequality we prove a lower bound $|A+\\\\sqrt{2} A|\\\\geq (1+\\\\sqrt{2})^2|A|-O({|A|}^{1-\\\\varepsilon})$ which is essentially tight. We also formulate a conjecture about the value of $\\\\liminf |A+\\\\lambda A|/|A|$ for an arbitrary algebraic $\\\\lambda$. Finally, we prove a tight lower bound on the Lebesgue measure of $K+\\\\mathcal{T} K$ for a given linear operator $\\\\mathcal{T}\\\\in \\\\operatorname{End}(\\\\mathbb{R}^d)$ and a compact set $K\\\\subset \\\\mathbb{R}^d$ with fixed measure. This continuous result supports the conjecture and yields an upper bound in it.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2023.12.117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2023.12.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
For a finite set $A\subset \mathbb{R}$ and real $\lambda$, let $A+\lambda A:=\{a+\lambda b :\, a,b\in A\}$. Combining a structural theorem of Freiman on sets with small doubling constants together with a discrete analogue of Prekopa--Leindler inequality we prove a lower bound $|A+\sqrt{2} A|\geq (1+\sqrt{2})^2|A|-O({|A|}^{1-\varepsilon})$ which is essentially tight. We also formulate a conjecture about the value of $\liminf |A+\lambda A|/|A|$ for an arbitrary algebraic $\lambda$. Finally, we prove a tight lower bound on the Lebesgue measure of $K+\mathcal{T} K$ for a given linear operator $\mathcal{T}\in \operatorname{End}(\mathbb{R}^d)$ and a compact set $K\subset \mathbb{R}^d$ with fixed measure. This continuous result supports the conjecture and yields an upper bound in it.