双环群的最小群行列式

Q4 Mathematics
B. Paudel, Christopher G. Pinner
{"title":"双环群的最小群行列式","authors":"B. Paudel, Christopher G. Pinner","doi":"10.2140/moscow.2021.10.235","DOIUrl":null,"url":null,"abstract":"We determine the minimal non-trivial integer group determinant for the dicyclic group of order 4n when n is odd. We also discuss the set of all integer group determinants for the dicyclic groups of order 4p.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Minimal group determinants for dicyclic groups\",\"authors\":\"B. Paudel, Christopher G. Pinner\",\"doi\":\"10.2140/moscow.2021.10.235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We determine the minimal non-trivial integer group determinant for the dicyclic group of order 4n when n is odd. We also discuss the set of all integer group determinants for the dicyclic groups of order 4p.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2021.10.235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2021.10.235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

摘要

当n为奇数时,我们确定了4n阶双环群的最小非平凡整数群行列式。我们还讨论了4p阶双环群的所有整数群行列式的集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal group determinants for dicyclic groups
We determine the minimal non-trivial integer group determinant for the dicyclic group of order 4n when n is odd. We also discuss the set of all integer group determinants for the dicyclic groups of order 4p.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信